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ABSTRACT 

 

 For several decades, technology scaling has brought many orders of magnitude 

improvements in digital CMOS performance and similar economic benefits to 

consumers. Feature size is quickly approaching nanometer scale, and the associated large 

variability imposes grand challenges in achieving reliable and robust operation. This is 

especially so for high-precision analog and mixed-signal circuits since they have always 

relied on accurate device matching which will not be available in nanometer CMOS or 

emerging technologies. This dissertation is aiming to develop design methodologies for 

overcoming such grand challenges without the conventional matching requirements. The 

underlining hypothesis is that, from a population of devices with significant variability, 

correct interconnection and sequencing can produce an effective system level matching 

that is several orders of magnitude better than the original devices. The optimal solution 

is non-deterministic polynomial-time hard but a simple ordered element matching 

strategy based on ordered statistics produces dramatically improved matching. Practical 

implementation of the new matching strategy is demonstrated on a 15-bit binary-

weighted current-steering digital-to-analog converter design in a 130nm CMOS 

technology. The core area of the chip is less than 0.42mm
2
, among which the MSB 

current source area is well within 0.021mm
2
. Measurement results have shown that the 

differential nonlinearity and integral nonlinearity can be reduced from 9.85LSB and 

17.41LSB to 0.34LSB and 0.77LSB, respectively. 
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CHAPTER 1 

OVERVIEW 

 

1.1 Introduction 

For several decades, the semiconductor industry has been relentlessly pushing to 

decrease the cost-per-function measure of integrated circuits (ICs). The minimum feature 

size in state-of-the-art digital CMOS process has been in deep submicron for some time 

and is quickly approaching nanometer scale. In these technology nodes and beyond, 

significant variability due to process, supply voltage, temperature, and stress (PVTS) 

variations, impose grand challenges to the design of high performance, reliable, and 

robust circuits and systems. With emerging materials and devices that may offer an 

alternative to CMOS, variability is no less.  

Achieving high precision and high linearity for analog and mixed-signal circuits 

and systems in nanometer and emerging technologies is an even greater challenge. This 

is because most of the important parameters for these circuits such as gain, linearity, 

signal to noise ratio, and many others, do not benefit from the technology scaling. In 

fact, they suffer significantly from it. One of the most important process properties from 

which high precision and high linearity are derived is device matching, be it transistor 

matching, capacitor matching, or resistor matching. The matching properties of these 

devices become considerably worse as the technologies continue to advance. 

Consequently, the performance variability in the circuits that are implemented by these 

devices will increase dramatically.  
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Since device mismatch is so poor in the nanometer and emerging technologies, 

no traditional methodologies can handle. Solving the matching problem will have 

incredibly wide impacts as many systems have built-in analog and mixed-signal 

functions whose performance typically defines the overall system performance. Such 

systems include audio and video functions in consumer electronics, wireless base 

stations, and deep-space instrumentations, and many other applications involving both 

digital and real worlds. 

 

1.2 Dissertation organization 

This dissertation is aiming at developing matching strategies to achieve high 

precision and high linearity in analog and mixed-signal circuits with the presence of 

large random component variations. The underlining hypothesis is that from a 

population of elements with significant variability, correct interconnection and 

sequencing can produce an effective system level matching that is several orders of 

magnitude better than the original elements. Although the problem of achieving the 

optimal system level matching can be shown to be non-deterministic polynomial-time 

(NP) hard, a simple heuristic strategy called ordered element matching (OEM) based on 

ordered statistics can produce dramatically improved matching. Furthermore, this work 

will develop practical implementations of the OEM strategy and demonstrate its great 

matching improvements for a high-resolution current-steering digital-to-analog converter 

(DAC) in one of the modern CMOS technologies. 
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Chapter 2 of this dissertation emphasizes the theoretical background of OEM 

utilizing results from the area of order statistics. The new theory is motivated by data 

converter designs which represent a large class of analog and mixed-signal circuits. 

From thorough statistical analysis, it is proven to be capable of reducing standard 

deviation of the random mismatch errors by a factor of at least 6.5 in a reasonably sized 

component population. Meanwhile, an outlier elimination strategy can be incorporated 

by putting in additional elements to enhance the matching performance. In order to take 

the maximum benefit offered by OEM, a “binarization” strategy is also proposed, which 

generates a well matched binary-weighted array from a mismatched unary-weighted 

array by n‒1 OEM iterations in the case of an n-bit structure.  

In Chapter 3, a 15-bit binary-weighted current-steering DAC is designed and 

fabricated in a standard 130nm CMOS technology. The new matching strategies are 

applied to the 7-bit most-significant-bit (MSB) array, while the 8-bit least-significant-bit 

(LSB) array is implemented based on the intrinsic accuracy of the fabrication 

technology. The core area of the chip is less than 0.42mm
2
, among which the MSB 

current source area is well within 0.021mm
2
. Measurement results have shown that the 

differential nonlinearity (DNL) and integral nonlinearity (INL) performance can be 

reduced from 9.85LSB and 17.41LSB to 0.34LSB and 0.77LSB, respectively.  

Chapter 4 illustrates the optimal binarization problem which is shown to be NP-

hard. Several other heuristic binarization strategies are proposed. By considerations of 

both practical and computational complexity, OEM binarization features simplicity and 

efficiency, and it offers the similar matching performance compared to the other 
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binarization methods. Meanwhile, in this chapter, we also emphasize how to develop an 

optimal segmentation for OEM binarization by considering a tradeoff between resource 

and linearity performance. Based on the tradeoff, multiple versions of optimization 

problems are formulated. Then, a simple heuristic approach is presented to one of these 

optimization problems, which synthesizes near-optimal segmentation solutions. The 

proposed approach can be applied to any data converter designs regardless of 

implementation details. It can be shown that traditional segmentations do not always 

guarantee the best tradeoff.  

Finally, Chapter 5 concludes this dissertation.  
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CHAPTER 2 

AN ORDER-STATISTICS BASED MATCHING STRATEGY FOR CIRCUIT 

COMPONENTS IN DATA CONVERTERS 

 

2.1 Introduction 

Data converters are the interfaces for information flowing between the digital and 

real worlds. They play crucial roles in many electronic circuits and systems today. 

Analog-to-digital converters (ADCs) covert an analog voltage or current into digital 

domain for further digital signal processing, whereas digital-to-analog converters 

(DACs) convert digital information into analog domain as representations of voltage, 

current, or electric charge to carry out real-world functions. Many ADCs [1]-[10] and 

DACs [11]-[20] rely on matched circuit components such as transistors, resistors, or 

capacitors to perform their data conversion tasks. However, the IC fabrication 

technology invariably produces imperfectly matched circuit components. The 

imperfections lead to component parameters deviating from their designed values. The 

resulting errors contain a significant random part which is determined by the inherent 

matching properties of the fabrication process, and they are often termed as random 

mismatch. As IC technology continues to advance, motivated by Moore’s law, random 

mismatch becomes significantly worse due to shrink of device size and supply voltage 

[21]-[23]. Since it causes electrical property variations of the fabricated elements which 

result variability in circuit properties, random mismatch is considered as one of the 
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major sources of error that degrade linearity performance and parametric yield of many 

analog and mixed-signal circuits and systems, especially of data converters. 

The variations in component parameters caused by random mismatch are random 

in nature, and thus they are modeled as random variables with mean of zero and standard 

deviation related to the physical area of matching-critical components [24]-[29]. In 

general, a factor of four augmentation in area corresponds to a factor of two reduction in 

standard deviation of the mismatch errors. Therefore, 1-bit linearity enhancement will 

lead to a quadruple of circuit area. Nevertheless, the maximum allowed area is limited 

by the available die size as growing number of circuits and systems are integrated into a 

single chip. Additionally, large device dimensions deteriorate parasitic capacitance 

effects which limit the achievable speed of data converters and in some cases increase 

the power consumptions [10], [30].  

Besides increasing the area, many other techniques can be applied to compensate 

random mismatch errors in the matching-critical components for data converters. They 

can be divided into four categories, i.e., trimming, calibration, switching-sequence 

adjustment, and dynamic element matching (DEM). Each category is briefly discussed in 

the following paragraphs.  

Trimming compensates the random mismatch errors by regulating the component 

parameters at the wafer stage. It requires accurate test equipments to continuously 

measure and compare trimmed parameters with their nominal values. There are mainly 

two types of trimming. One is to change the physical dimensions of the circuit elements 

by applying laser beams [11], [19], whereas the other one is to connect/disconnect an 
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array of binary-weighted small elements using fuses or MOS switches [29]. Both forms 

of trimming can be cost-ineffective in test time and equipments, and the achieved 

accuracy does not account for temperature and aging effects [31].  

Calibration alleviates the random mismatch effect by feeding back either digital 

or analog correction signals to the data converters' input or output after measuring errors 

based on an available reference. Calibration can be treated as an improved version of 

trimming since it characterizes errors on chip or board and continuously corrects them 

over different time and environments. Some calibration techniques have to be performed 

at circuit power-up or stand-by phase [11], [16], [17], while some can be done in 

background without any interference to the normal operation [5]-[7], [9], [10]. Yet, the 

obtained accuracy level is limited by the resolution and accuracy of error measurement 

circuits and correction signals.   

Switching-sequence adjustment is commonly used in layout designs to 

compensate the systematic gradient errors [13], [14], [29]. In recent publications [18], 

[20], this method has been extended to compensate random mismatch errors in the data 

converters. It improves linearity performance by changing component switching 

sequence according to the parameter orders. That is to place an element having smaller 

parameter in neighbor with the one having larger parameter. However, this approach 

only improves the integral nonlinearity (INL), and the differential nonlinearity (DNL) 

remains unchanged which greatly limits the matching efficiency.  

DEM is another popular solution to the random mismatch errors for matching–

critical components. It dynamically changes the positions of mismatched elements at 
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different time so that the equivalent component at each position is nearly matched on a 

time average. Some examples of this technique can be found in [2], [3], [15], [32]-[34]. 

Among all of these, the popular algorithms are butterfly randomization [32], individual 

level averaging [33], and data weighted averaging [15], [34]. Unlike the static random 

mismatch compensation techniques, DEM translates mismatch errors into noise. 

However, the translated noise is only partially shaped where the in-band residuals could 

possibly affect the data converters’ signal-to-noise ratio (SNR) [35]. Furthermore, the 

output will be inaccurate at one time instant since DEM only guarantees matching on 

average, and thereby it cannot be implemented in some applications. 

In this chapter, we introduce a novel random mismatch compensation theory 

called ordered element matching (OEM), which does not fall into any of the four 

categories mentioned above. It sorts the circuit components based on their parameter 

magnitudes, and then pairs and sums the complimentary ordered components. By doing 

so, it creates a new sample population with twice larger in magnitude but much smaller 

variations than those of the original sample population. Since random mismatch errors 

are modeled as random variables with certain statistical characteristics, a statistical 

analysis is performed to validate this theory. The statistics of the sorted and summed 

random variables can be obtained based on the theory of order statistics. The variation 

reduction factors are calculated by comparing the standard deviations between statistics 

of original and summed random variables.  

The OEM theory is derived based on the definition of quasi-midranges in the 

subject of order statistics, where they are the half of the sum of complimentary ordered 



www.manaraa.com

9 

 

samples in a population [36]. Quasi-midranges sometimes serve as a fast estimation for 

the mean of a sample population; however, they are known to be sensitive to the outliers 

of parent distributions [36], [37]. This knowledge also holds for the OEM theory, and the 

standard deviations of those outlying summed random variables are shown to be 

substantially larger than the others in statistical analysis. Then, an outlier elimination 

strategy is proposed to omit a certain number of outlying elements in the original 

samples and thereby further reduces the parameter variations. More importantly, it 

considerably improves the DNL performance in a reasonably sized component 

population.   

Based upon these, we develop a new matching technique called complete-

folding, which can dramatically reduce both DNL and INL by selectively regrouping 

circuit elements according to their parameter orders and eventually transforming a 

unary-weighted array into a binary-weighted array. It has been demonstrated in [38] that 

this technique has a significant impact on linearity performance and parametric yield in a 

current-steering DAC design. In this work, statistical simulations are performed by using 

the complete-folding technique to justify the results obtained from the statistical 

analysis. 

This chapter is organized as follows. Section 2.2 introduces the OEM theory in 

details along with statistical formulations using the theory of order statistics. Section 2.3 

addresses the outlier elimination strategy and the ensuing standard deviation reduction 

based on statistical analysis. In Section 2.4, the basic functionality of complete-folding 

technique is illustrated, and meanwhile the circuit realization is briefly discussed. 
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Section 2.5 presents the matching accuracy improvement in a current source array when 

both complete-folding and outlier elimination are applied. Comparisons are also made 

among the competing static random mismatch compensation techniques. Significant 

linearity enhancement and design cost reduction are observed. Finally, the chapter is 

summarized in Section 2.6. 

 

2.2 Ordered element matching 

 Random mismatch errors in the matching-critical circuit components can 

severely degrade linearity performance and parametric yield of many data converters, 

because they cause random variations in the component parameters that lead to 

unpredictable circuit performance. The OEM theory is aiming at creating a new 

component population with significantly reduced variations according to the original 

component parameter orders.  

 

 

Figure 2.1 The OEM procedure for a unary-weighted resistor array with sample size of 8 
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To facilitate the understanding of this new theory, Figure 2.1 illustrates the 

matching process for a unary-weighted resistor array with sample size of 8. The 

rectangles in the figure denotes for the resistance values with random variations. The 

first step is to sort these resistors by their resistance values in the ascending order. All 

resistors are numbered from 1, 2 … 8 with their respective resistance. The second step is 

to pair the complimentary ordered resistors into one group. A series of paired resistors 

are organized as (1, 8), (2, 7), (3, 6), and (4, 5). The final step is to sum the two resistors 

within each pair and generate a new array of resistors with sample size of 4. The new 

resistors have resistance values that are twice as large as those in the original array, but 

their resistance variations are reduced considerably.   

This theory is also applicable to improve matching performance in the array of 

transistors or capacitors where the same procedure can be followed. In those cases, the 

rectangles in the figure would denote for drain currents and capacitance values, 

respectively. 

 

2.2.1 Statistical formulation 

In order to quantify the amount of variation reduction by OEM, a statistical 

analysis is performed. Here, the random variations in the component parameters are 

modeled by a set of Gaussian distributed random variables. Gaussian distribution is used 

because:: (a) most engineers are more familiar with Gaussian distribution; (b) Gaussian 

distribution is a good approximation for any random variables affected by a large 

number of intrinsic random variations, due to the central limit theorem, (c) any other 

distributions can be approximated by Gaussian distribution if the mean is several 



www.manaraa.com

12 

 

standard deviations away from the distribution boundaries [39]. However, it should be 

pointed out that the following statistical analysis can be applied to any distributions, 

which indicates the OEM theory is even capable of compensating non-Gaussian 

mismatch errors. 

Considering the general cases, we take sample size of the original unary-

weighted component array as 2n, where n is an integer number greater than 0. We will 

prove later that the variation reduction varies from population size selections. It should 

be also noticed random mismatch is the only considered source of error in this work. All 

other nonidealities in the matching-critical components such as gradient errors are 

assumed to be managed by the existing layout strategies [29].  

Then, the parameter magnitude for each original circuit component can be 

expressed as: 

,  1 2 ,i iX Y i n        (2.1) 

where µ is the nominal parameter value, and Xi and Yi are the real parameter value and 

random mismatch error for the ith component, respectively. Random variables Yi are 

assumed to be statistically independent and identically distributed (i.i.d.), and they 

follow Gaussian distribution with mean of 0 and standard deviation of σ, i.e., Yi ~ N(0, 

σ
2
). On the other hand, random variables Xi are also i.i.d. and follow Gaussian 

distribution with mean of µ and standard deviation of σ, i.e., Xi ~ N(µ, σ
2
).  

Our objective is to show the random variations can be significantly reduced by 

applying the OEM theory. To simplify the latter analysis, random variables Xi are 

transformed into the standard Gaussian distribution according to: 
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 ~ 0,1 .i
i

X
Z N






     (2.2) 

Zi can be treated as normalized mismatch errors from the nominal value µ, and 

their statistical characteristics can be described by the probability density function (PDF) 

and cumulative distribution function (CDF), i.e., fZ(z) and FZ(z), where  

 
21

exp ,  ,
22

Z

z
f z z



 
      

 
   (2.3) 

   
1

1 erf .
2 2

z

Z Z

z
F z f t dt



  
     

  
    (2.4) 

In the following analysis, we apply the OEM procedure to random variables Zi, 

where they are sorted, paired and summed. The sorting step creates a series of ordered 

random variables, and the pairing and summing steps generate new random variables 

with sample size of n based on those ordered ones. The variation reduction factors are 

obtained by comparing the standard deviations between the original and summed 

random variables. 

 

2.2.2 Statistics of ordered components 

The first step of OEM is to rank the circuit components in the ascending order 

according to their parameter values. This is equivalent as sorting the random variables 

Zi. Suppose Z1, Z2 … Z2n are sorted in order of magnitude, and they are written as Z(1;2n) 

≤ Z(2;2n) ≤ … ≤ Z(2n;2n), then Z(i;2n) is called the ith order statistic [36].  

To study the statistical characteristics of these ordered random variables Z(i;2n), 

their PDFs and CDFs can be derived based on the theory of order statistics [40]: 
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 
 

 

   
   

 

;2

1 22 !
1

1 ! 2 !

,  ,

i n

i n i

Z Z Z

Z

n
f z F z F z

i n i

f z z

 

          

    

  (2.5) 

 
 

 

 
   

;2

2
22 !

1 ,
! 2 !i n

n
i n i

Z Z Z

i

n
F z F z F z

i n i



         
    (2.6) 

where fZ(z) and FZ(z) have the forms of (2.3) and (2.4), respectively. It is noted that the 

distribution functions for the ordered random variables are different from each other.  

For the ith order statistic Z(i;2n), the expected value µ(i;2n) and variance σ
2

(i;2n) can 

be obtained by computing the corresponding moments as formulated in [40]: 

   
 

;2;2
,

i n

r r

Zi n
EZ z f z dz




      (2.7) 

   ;2 ;2
,

i n i n
EZ       (2.8) 

         
2

2 2

;2 ;2 ;2 ;2
,

i n i n i n i n
Var Z EZ EZ       (2.9) 

where r is an integer number greater than 0. It should be noticed the ordered random 

variables are no longer i.i.d.. Instead, they become correlated after the sorting process. 

The covariance of the ith and jth order statistics (Z(i;2n) and Z(j;2n)) is denoted as σ(i, j;2n), 

where 

      

         

, ;2 ;2 ;2

;2 ;2 ;2 ;2

,

,

1 2 ,  1 2 .

i j n i n j n

i n i n j n j n

Cov Z Z

E Z Z

i n j n



 



    
 

   

  (2.10) 

Since the original population follows standard Gaussian distribution, we can 

derive two moment identities from (2.7), (2.8) and (2.9). They are given below: 
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   ;2 2 1;2
,

i n n i n
 

 
       (2.11) 

   
2 2

;2 2 1;2
.

i n n i n
 

 
      (2.12) 

The details of derivations can be found in [36] and [40]. Equation (2.11) 

indicates the expected values of the complementary order statistics (Z(i;2n) and Z(2n-i+1;2n)) 

have the same magnitude but with opposite signs. Equivalently, they are symmetric at 

the mean value of original population, i.e., 0. On the other hand, according to (2.12), the 

variance should be the same for the complementary order statistics. Both equations will 

be used for the statistical analysis when performing the pairing and summing steps. 

 

2.2.3 Statistics of sum of complementary ordered components 

The next steps of OEM are to pair and sum the complementary ordered 

components and generate a new population with sample size of n. This process can be 

viewed as the error compensation phase and it is as equivalent as adding the 

complementary order statistics from population Z(1;2n), Z(2;2n) …  Z(2n;2n) in our analysis. 

The obtained new sample population is represented as M1, M2 … Mn, where  

   ;2 2 1;2
,  1 .k k n n k n

M Z Z k n
 

       (2.13) 

Mk corresponds to the sum of the kth complementary order statistics. For 

example, M1 represents the sum of minimum and maximum (Z(1;2n) and Z(2n;2n)) in the 

original sample population. In addition, the sample size of the new population Mk is 

reduced to n because of the pairing step. 

Intuitively, if we are adding the smaller and larger ordered values in a sample 

population, the sum tends to be twice as large as the population’s mean value. In our 
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analysis, the sum will approach to 0, because the mean is normalized to 0. To provide 

the theoretical justification, we have to examine the statistical characteristics of the new 

random variables Mk by obtaining their PDFs and CDFs.  

The first step is to find the joint PDF of the complementary order statistics, 

which can be derived from the joint PDF of two order statistics given in [36]: 

          

   
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

 



 

 

 


   
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 

  
 

 

    

  (2.14) 

where fZ(z) and FZ(z) are given by (2.3) and (2.4), respectively. From (2.13), we have: 

   2 1;2 ;2
.kn k n k n

z m z
 

      (2.15) 

Followed by this, the joint PDF of Mk and Z(k;2n) can be derived by substituting z(2n-k+1;2n) 

in (2.14) with (2.15) as shown below: 

      
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




   

   
 

   
 

  

    

   (2.16) 

The marginal PDF of Mk is obtained by integrating out (2.16) over z(k;2n): 
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m
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     (2.17) 

The CDF of Mk can be computed as: 

    .
k

k k

m

M k MF m f t dt


      (2.18) 

From the derivations above, Mk will have different distribution functions if k and 

2n are assigned for different values. Consequently, the standard deviations of these 

random variables will also be different. Then, when applying the OEM theory, the 

efficiency of the variation reduction will vary, depending on the order ranks and the 

original sample population size. The impact of these factors will be thoroughly 

addressed in the next subsection.  

The expected value µk and variance σ
2

k
 

of Mk are calculated by their 

corresponding moments as follows: 

  ,
k

r r

k k M k kEM m f m dm



      (2.19) 

,k kEM        (2.20) 

   
22 2 .k k k kVar M EM EM       (2.21) 

A direct way to obtain µk and σ
2

k is to combine (2.10), (2.11), (2.12), (2.13), (2.20), and 

(2.21) as illustrated below: 

    
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    (2.22) 
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   (2.23) 

 Not surprisingly, all random variables Mk have expected value of 0. This is a 

very important observation, because it indicates the mismatch errors in the normalized 

sample population Z will be cancelled out by OEM. The same effect will also happen for 

mismatch errors in the original sample population X. Yet, the expected values µk’ will be 

different from (2.22), and they should be twice as large as the nominal parameter value 

µ. This can be derived based on (2.2) as follows: 
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   (2.24) 

However, random mismatch errors cannot be completely compensated by OEM 

in a finite sample population. The variance of the residual errors is governed by (2.23). 

For the later analysis, we will use this knowledge to show the significant standard 

deviation improvement factors.  

 

2.2.4 Standard deviation reduction calculation  

The variation reduction factors can be obtained by comparing the standard 

deviations between random variables Zi and Mk. However, in order to have a fair 

comparison, we need to modify the random variables Mk by multiplying a factor of 0.5. 
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This is because the parameter magnitudes in the new sample population after OEM are 

actually doubled comparing to its original sample population as shown in (2.24). This 

should be taken into account in the standard deviation analysis even though the standard 

Gaussian transformation makes the doubling effect undetectable in the expected value 

analysis. The standard deviations of 0.5Mk can be obtained by: 

   0.5 0.5 0.5 .k k kVar M Var M      (2.25) 

The standard deviations of random variables Zi will always be unity since they 

follow standard Gaussian distribution. Here, we can calculate the variation reduction 

factors Ak by taking the ratio of standard deviations of Zi to standard deviations of 

0.5Mk, i.e.: 

1
.

0.5
k

k

A


      (2.26) 

As mentioned previously, the standard deviations of Mk varies according to the 

order ranks (k) and the original sample population size (2n). Therefore, we pick different 

2n values to investigate the impact on the variation reduction. Here, 2n is set to be 8, 16, 

32, 64, 128, 256, and 512. From (2.21), (2.23) and (2.25), we calculate the standard 

deviations of 0.5Mk for different population sizes and order ranks. The results are plotted 

and compared in Figure 2.2. It is observed the new population size after OEM is halved 

in each case, and the standard deviations decrease as the original population size 

increases. When given a fixed sample population, the standard deviation first drops off 

as increasing the k values and then slightly bounces back once it reaches the minimum. 

The rebound near "n" is due to the fact that, in any random population, the number of 
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components greater than the mean (positive errors) is inevitably different from the 

number of components less than the mean (negative errors), and therefore near “n” two 

components with the same error signs are added while a little before “n” two 

components with opposite error signs are added. More details on this issue can be found 

in [37], [40], [41], and [42]. The value of k that minimizes the standard deviations is 

roughly given by the ratio [40]:  

0.2702.
2

k

n
      (2.27) 

The variation reduction factors for each sample population can be obtained by 

(2.26). Since the quantity Ak varies with k, we shall take its average value as the 

variation reduction in a given sample population. The obtained results are summarized in 

Table 2.1. It is noticed the standard deviations of random mismatch errors are reduced 

significantly. To be quantitative, the variation reduction factor is more than 6.5 for a 

sample population size greater than 64. In addition, the reduction factor keeps growing 

with the increase of sample sizes, which indicates the OEM theory is more effective in a 

large sample population.  

On the other hand, it is shown in Figure 2.2 that the standard deviations of 0.5Mk 

in the lower ranks (small k values) are quite large compared to the others in a given 

sample population. They also have much less reduction when the sample size grows. As 

a result, these low ranked samples in population Mk limit the overall standard deviation 

reduction factors. If a certain number of such samples can be excluded from the 

population, a better reduction can be achieved. In the following section, we will focus on 

outlier elimination strategy and its related statistical analysis.  
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Figure 2.2 Standard deviations for statistics of new random variables after OEM (0.5Mk) 

in different sample population cases 

 

Table 2.1 Average variation reduction after OEM in different sample population cases  

 

Population size 

original 

(2n) 

Population size 

after OEM 

(n) 

Average 

standard deviation 

reduction 

8 4 2.45 

16 8 3.36 

32 16 4.68 

64 32 6.56 

128 64 9.24 

256 128 13.04 

512 256 18.42 

 

 

2.3 Outlier elimination 

 The standard deviation reduction factors by applying the OEM theory are 

considerably degraded due to the low rank samples in the new population Mk. These 
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samples are equivalent in representing the lower and upper tails of the ordered sample 

population. In other words, the OEM theory is very sensitive to the outlying values of 

the original sample population. To further boost the error compensation efficiency, we 

propose a systematic strategy to eliminate a certain number of those samples. The details 

of the outlier elimination strategy are explained in the following subsections. 

 

2.3.1 Outlier definition 

As shown in Figure 2.2, for a fixed sample population size the standard deviation 

of 0.5Mk starts out at a large value, and drops quickly to a minimum, and then recovers 

slightly as continuously increasing the k value. Followed by this trend, we can use the 

last standard deviation value in Mk, i.e., σn, as a reference to set the threshold for the 

outliers in Mk. Hence, the outliers are defined as a sample collection from Mk that 

satisfies the following condition: 

1,  1 ,k n

n

g g


 


        (2.28) 

where g is a control factor that determines the number of outliers. When g=σ1/σn, there is 

no outliers, because σ1 is the maximum standard deviation; when g=1, all samples that 

have standard deviations greater than σn are removed from the sample population. A new 

variable q is introduced as the number of outliers in the population Mk. The lower limit 

for q is 0, whereas the upper limit is determined by the case when g=1.  

Therefore, the outliers in Mk will always fall into the low rank categories. 

Suppose we have outliers with sample size of q in Mk, they are simply the first q 

samples, i.e., M1, M2 … Mq. Recall (2.13), then the corresponding outliers in the ordered 
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sample population Z(i;2n) are (Z(1;2n), Z(2n;2n)), (Z(2;2n), Z(2n-1;2n)) … (Z(q;2n), Z(2n-q+1;2n)), 

which represent the lower and upper tails of the original sample population.  

 

2.3.2 Outlier elimination strategy 

The outlier elimination strategy is to symmetrically chop off q samples at each 

end of the ordered population Z(i;2n). In order to integrate the outlier elimination into the 

OEM procedure, we first still sort out the original component population according to 

their parameter orders. The next step is to omit q outliers at both tails of the ordered 

population. Followed by that, the pairing and summing steps take place. 

By cutting the outliers in the ordered sample population, we are able to create a 

new component population with much smaller variations. Here, the symmetrically 

truncated population can be expressed as Z(q+1;2n) ≤ Z(q+2;2n) ≤ … ≤ Z(2n-q;2n), and the new 

population after the pairing and summing steps can be rewritten as Mq+1, Mq+2 … Mn, 

where  

   ;2 2 - 1;2
,  1 .p p n n p n

M Z Z q p n


        (2.29) 

 

2.3.3 Standard deviation reduction enhancement 

As mentioned above, the maximum value for q is determined by (2.28) when 

g=1. This case is referred as the maximum outlier elimination and will be used in the 

illustration of variation reduction enhancement. In order to provide reasonable 

comparisons, we shall keep the population size after the outlier elimination and OEM 

procedures as 4, 8, 16, 32, 64, 128 and 256. Then, 2q samples are intentionally added in 



www.manaraa.com

24 

 

the original population Z to accommodate the sample truncation. The value of 2q is 

determined by repeating the maximum outlier elimination process in differently sized 

sample populations until the resulting population size matches the desired value. 

Followed by this procedure, the original population sizes 2n are taken to be 10, 20, 40, 

82, 164, 326, and 652, whereas the corresponding outlier numbers 2q are 2, 4, 8, 18, 36, 

70, and 140. It is interesting to notice the percentage of outlier numbers, i.e., 2q/2n=q/n, 

is about the same for all population cases which is 21% on average. This observation 

actually gives the upper limit of q as 0.21n.   

The variation reduction factors can be derived by using the same strategy as 

discussed in the previous section. The standard deviations have to be compared between 

random variables Zi and 0.5Mp. Intuitively, the standard deviations of 0.5Mp should be 

equal to the standard deviations of the remaining random variables in 0.5Mk where the 

first q samples are trimmed off. However, the true standard deviations are slightly 

different since the statistical characteristics of the original population have been 

modified by the sample truncations. We will come back to this problem in the following 

subsection. For the present stage, we consider the impacts of the sample truncations on 

the standard deviations by introducing a normalization factor f, where 

2 2
.

2

n p n p
f

n n

 
       (2.30) 

The true standard deviations, denoted as σp*, can be expressed by multiplying f 

to the standard deviations of the remaining random variables in 0.5Mk, i.e., 

* 0.5 ,  1 .p kf q k n          (2.31) 
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The resulting standard deviations for different sample population sizes are calculated and 

compared in Figure 2.3. It is clear that the standard deviations in each case are very close 

to uniformity after applying the maximum outlier elimination. 

Now, we can calculate the new variation reduction factors Bp by taking the ratio 

of standard deviations of Zi to the true standard deviations of 0.5Mp: 

1
.

*
p

p

B


      (2.32) 

The average reduction factors for different sample populations are concluded in 

Table 2.2. Comparing to Table 2.1, the variation reduction is enhanced by a factor of 1.5. 

From this observation only, the variation reduction enhancement by applying the outlier 

elimination strategy may not be so promising; however it shows dramatic improvements 

on the DNL performance which will be demonstrated later.  

The continuous variation reductions are accompanied by the cost of additional 

samples. By taking the ratio of the additional sample size to the original sample size as 

given in Table 2.1, a 27% overhead is required for maximum outlier elimination. 

However, maximum outlier elimination is still optimal in the sense that (a) if fewer 

extreme components are thrown, the worst case mismatch after OEM is due to those 

extreme pairs and it is expected to be larger; and (b) if more are thrown, the worst case 

mismatch is expected to be from pairs near “n”. Practically, one should choose the 

outlier number q by considering a trade-off between design effort and optimally utilizing 

the outlier elimination strategy. 
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Figure 2.3 Standard deviations for statistics of new random variables after maximum 

outlier elimination and OEM (0.5Mp) in different sample population cases 

 

Table 2.2 Average variation reduction after maximum outlier elimination and OEM in 

different sample population cases 

 

Population size 

original  

(2n) 

Population size 

after outlier 

(2n-2q) 

Population size 

after OEM 

(n-q) 

Average 

standard deviation 

reduction 

10 8 4 3.51 

20 16 8 4.89 

40 32 16 6.87 

82 64 32 10.08 

164 128 64 14.24 

326 256 128 19.93 

652 512 256 28.18 
 

 

2.3.4 Statistical analysis for outlier elimination 

The standard deviation reduction by outlier elimination is simply due to the 

symmetrical truncation in the ordered population Z(i;2n). The amount of truncations can 
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be defined as α at the lower tail and 1-β at the upper tail, where  

,
2

q

n
       (2.33) 

1 ,
2

q

n
       (2.34) 

0 1.         (2.35) 

The sample population after outlier elimination, i.e., Z(q+1;2n) ≤ Z(q+2;2n) ≤ … ≤ 

Z(2n-q;2n), can be treated as the order statistics of random variables V1, V2 … V2n-2q from a 

doubly truncated standard Gaussian population V. It truncates the original population 

below a and above b, where 

 Pr ,Z a       (2.36) 

 Pr 1 .Z b        (2.37) 

The values of a and b can be easily obtained based on (2.4), 

 1 ,Za F       (2.38) 

 1 .Zb F       (2.39) 

Because the standard Gaussian population is truncated in a symmetric fashion, a and b 

are related by  

,a b        (2.40) 

   .Z Zf a f b     (2.41) 

The PDF and CDF of the doubly truncated standard Gaussian population, i.e., 

fV(v) and FV(v), can be obtained from [40]: 
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The expected value µ' and variance σ'
2
 are obtained by: 

   
' ,Z Zf a f b


 





     (2.44) 

       
2

2' 1 .Z Z Z Za f a b f b f a f b


   

    
    

  
   (2.45) 

Based on (2.40) and (2.41), we can simplify (2.44) and (2.45) as:  

' 0,       (2.46) 

 2 2
' 1 .Za f a


 


 


     (2.47) 

The standard deviation enhancement factor C is just the standard deviation ratio 

between the original and truncated sample populations, which can be written as: 

1
.

'
C


      (2.48) 

To verify (2.48), we consider the case of maximum outlier elimination. The 

outlier number q is approximately equal to 0.21n as mentioned previously. By 

substituting this relation in (2.33) and (2.34), we can calculate α and β to be 0.105 and 

0.895, respectively. The corresponding a and b values are -1.2536 and 1.2536. The 



www.manaraa.com

29 

 

obtained new standard deviation for the truncated population is about 0.65, and the 

enhancement factor is around 1.54, which matches our comparison between Table 2.1 

and 2.2.  

 

2.4 Complete-folding technique 

 We have theoretically demonstrated the OEM theory is very effective to reduce 

the standard deviations of random mismatch errors in a matching-critical component 

population. Based on this theory, a new random mismatch compensation technique, 

called complete-folding, is developed. It generates a well matched binary-weighted array 

from a unary-weighted array according to the component parameter orders. 

 

2.4.1 Single-folding operation 

To understand the functionality of complete-folding technique, we have to first 

consider single-folding operation. Here, a current source array is taken as an example. 

Single-folding operation is directly based on the OEM theory, in which a similar 

sequence of sorting, pairing and summing procedure is performed. The only difference is 

that an odd number of original samples are adopted, rather than the even number used in 

the previous derivation.  

Figure 2.4(a) illustrates the three steps of single-folding operation for a 3-bit 

unary-weighted array that has 7 current sources in total. The rectangle in the figure 

denotes for the current value of each current source with random mismatch error. At the 

beginning, all current sources are sorted in the ascending order according to their 
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magnitudes. Then, the complementary ordered current sources are paired, and the 

current source in the middle is left alone. Finally, two current sources in each pair are 

summed together, and the single current source is moved to the end of the new array. By 

doing so, we have generated a new unary-weighted current source array with sample size 

of 3, and their current values are approximately twice as large as the last single current 

source. More importantly, the random variations in current values are reduced 

significantly.  

The new current source array actually represents a segmentation of 2-bit unary-

weighted and 1-bit binary-weighted. In general, by applying the single-folding operation, 

an N-bit unary-weighted array can be converted into a segmentation of (N-1)-bit unary-

weighted and 1-bit binary-weighted. 

 

2.4.2 Complete-folding operation 

If single-folding operation is continuously applied to the new unary-weighted 

array, eventually the N-bit unary-weighted array becomes an N-bit binary-weighted 

array. The entire folding process is therefore named as complete-folding. In other words, 

complete-folding is to implement (N-1)-time single-folding in an N-bit unary-weighted 

array. In the previous example of a 3-bit current source array, only 2-time single-folding 

is required to accomplish the complete-folding process. Figure 2.4(b) shows the second 

single-folding operation. It is noted only three current sources are left at the end, and 

they are differed by a factor of 2. Furthermore, the parameter variations are continuously 

diminishing compared to the results in the first single-folding operation.  
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Figure 2.4 (a) 1st single-folding and (b) 2nd single-folding for a 3-bit unary-weighted 

current source array 

 

 

2.4.3 Matching performance improvement 

The resulting variation reductions by complete-folding technique can be 

understood with the help of the OEM theory. In the single-folding operation, the 

remaining single component represents the median of the N-bit unary-weighted array, 

where its expected value is the same as the expected value of the entire population. This 

feature is clearly addressed by our previous statistical analysis. The N-bit unary-

weighted array contains 2n-1 elements, where n=2
N-1

. The normalized error population Z 

has the same amount of random variables and follows standard Gaussian distribution. 

After the sorting process, the median of the population can be expressed as Z(n;2n-1). From 

the moment identities given in [40], the expected value of Z(n;2n-1) is: 

 ;2 1
0.

n n



      (2.49) 

Hence, the middle ranked component statistically possesses the least error to the 

design value of all components. On the other hand, all other summed components also 
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show much smaller parameter variations because of the OEM operation. As a result, the 

new segmented array exhibits superior matching accuracy compared to that of the 

original unary-weighted array. Followed by this, each single-folding operation brings 

some variation reduction, because the produced new sample population can be 

approximated by a Gaussian distribution [42]. However, it should be pointed out the 

most matching improvements are given by the very first number of single-folding 

operations within the complete-folding mechanism. This is not surprising because, as the 

folding process continues, the sample size under the treatment keeps shrinking and the 

resulting improvement factor becomes rather small, as shown in Table 2.1. 

 

2.4.4 Outlier elimination integration 

In order to further improve the matching accuracy, the outlier elimination 

strategy is integrated into the complete-folding technique. In practice, a certain number 

of additional components are introduced into the original component array, and then 

those largely defected components are omitted during the first single-folding operation. 

The corresponding outlier numbers for maximum outlier elimination can be determined 

from Table 2.2.  

For a better conceptual illustration, a 7-bit unary-weighted component array is set 

as an example. This array originally contains 127 components. After adding 36 extras, 

the sample size becomes 163. Based on the outlier elimination strategy, the first and last 

18 ordered components are omitted to ensure the obtained new sample size is the same 

as the original one. Once this process is finished, the complete-folding process is 
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performed. It is noticed a significant enhancement in the variation reduction can be 

achieved for the first single-folding operation as shown in Table 2.2.  

 

2.4.5 Implementation 

To implement the complete-folding technique, two important functions have to 

be realized. One is to obtain the ranks of component parameters, and the other one is to 

make the routing to each component fully addressable. A simple block diagram for a 

potential circuit realization is given in Figure 2.5. In this approach, every two 

components in the N-bit unary-weighted array are compared by either voltage or current 

through a comparator. The output is used in a digital processing block for component 

sorting and pairing operations. Then, each component is assigned to an appropriate 

address via a register bank. The same address code obtained by different components 

indicates the fact that they have been summed together for the purpose of reducing 

random variations.  

 

 

Figure 2.5 Block diagram of a circuit realization for complete-folding technique 
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The digital processing block can be easily implemented if an efficient sorting 

algorithm is applied. Meanwhile, thanks to the binary-weighted operation, there are only 

N possible routing addresses for the N-bit component array. Therefore, the width of the 

register bank is only log2N bits. On the other hand, the depth of the register bank is 

determined by the total number of components, i.e., 2
N
-1.  

When the complete-folding is applied to a reasonably sized component array 

with presented system blocks, the digital complexity can be easily managed. 

Nevertheless, this circuit realization might not be the best choice in every data converter 

design. A better implementation could be found once one has a thorough understanding 

of the specific circuits where complete-folding is utilized. 

 

2.5 Statistical simulation results 

 A number of statistical simulations are carried out to test the efficiency of the 

complete-folding technique that is cooperated with the OEM theory. In this work, an N-

bit unary-weighted current source array is used to conduct the simulations, where N may 

vary in the different simulation cases. This component array can be treated as the 

building block of the most significant bits (MSBs) in a 14-bit data converter design. It is 

well known that the static performance of a data converter strongly depends on the 

linearity of MSBs. Therefore, the matching performance of this component array plays a 

key role in determining the ultimate performance potential and design cost of the data 

converter. In the following discussions, the unit of LSB (least significant bit) always 

refers to the LSB at the 14-bit level.  
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It is also important to know random mismatch is the only considered source of 

error in these simulations. Other sources of errors in a current source array such as 

gradient errors and errors due to finite output impedance are assumed to be managed by 

the existing design techniques. To compensate gradient errors, each current source can 

be divided into 4 or more subunits so that special layout strategies can be applied. To 

compensate errors due to finite output impedance, one can use cascode transistors, or if 

voltage headroom is a concern, one can implement the design technique presented in 

[43]. 

 

 

Figure 2.6 DNL and INL distributions for 10,000 randomly generated 7-bit MSB arrays 

in a 14-bit data converter design with σMSB=1%: (a) original, (b) after single-folding, (c) 

after maximum outlier elimination and single-folding 
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Table 2.3 DNL and INL improvements after single-folding in different MSB arrays 

  

Number of bits 

of MSB array (N) 

DNL 

improvement 

INL 

improvement 

3 2.29 3.26 

4 2.83 4.08 

5 3.39 5.40 

6 4.11 7.20 

7 4.81 9.82 

8 5.50 13.25 

9 6.39 18.04 

 

Table 2.4 DNL and INL improvements after maximum outlier elimination and single-

folding in different MSB arrays 

 

Number of bits 

of MSB array 

(N) 

Outlier 

number 

(2q) 

DNL  

improvement 

INL 

improvement 

3 2 3.47 4.55 

4 4 4.70 6.17 

5 8 6.58 8.77 

6 18 9.92 13.03 

7 36 14.03 18.18 

8 70 20.37 25.92 

9 140 29.90 36.74 

 

 

2.5.1 Single-folding without outlier elimination 

In this subsection, the linearity improvements by applying single-folding to the 

N-bit MSB array are investigated, where N is taken as 3, 4, 5, 6, 7, 8, and 9. For each N, 

10,000 MSB arrays are randomly generated based on a relative standard deviation of the 

unit current source (σMSB). This standard deviation can be arbitrarily chosen (e.g., 1%), 

because our primary goal is to examine the linearity improvement factors, which are 

defined as the average ratio of the DNL and INL before and after applying single-

folding. 
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Figure 2.6(a) and (b) present the DNL and INL distributions for 10,000 randomly 

generated 7-bit MSB arrays in a 14-bit data converter design before and after single-

folding operations with σMSB=1%. Clearly, both DNL and INL distributions become 

narrower. It is also worth mentioning the 7-bit unary-weighted MSB array is now 

transformed into a segmentation of 6-bit unary-weighted and 1-bit binary-weighted. For 

other N values, the DNL and INL distributions follow the same trends as the N = 7 case. 

Table 2.3 summarizes the DNL and INL improvement factors for all simulated cases.  

From the theoretical perspective, the single-folding is straightly based on the 

OEM theory. Therefore, the DNL improvement factors shown in Table 2.3 are expected 

to represent the standard deviation improvement factors given in Table 2.1. However, 

they are actually quite different from each other. This is because the DNL after single-

folding operation is dominated by the outlying summed components in the new 

segmented array. As shown in Figure 2.2, those components have much larger standard 

deviations than the others, and as a result their improvement factors will be much less 

than the average factors shown in Table 2.1. Meanwhile, the INL performance after 

single-folding also becomes appealing because of the fact that it is associated with the 

DNL improvements. 

 

2.5.2 Single-folding with maximum outlier elimination 

So as to enhance the linearity performance, maximum outlier elimination strategy 

is integrated into the single-folding operation, where extra components are added to the 

original component array. The number of extra components added in each case is 
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obtained from Table 2.2, i.e., 2, 4, 8, 18, 36, 70 and 140. All other simulation setups are 

kept the same as the previous subsection.  

Figure 2.6(c) shows the new DNL and INL distributions for 10,000 randomly 

generated 7-bit MSB arrays after integrating maximum outlier elimination strategy. A 

considerable amount of improvements in both linearity distributions is observed 

compared to Figure 2.6(b). Table 2.4 concludes the DNL and INL improvement factors 

in different simulations. It is illustrated that the DNL and INL improvement factors are 

significantly enhanced by integrating the maximum outlier elimination strategy. For 

MSB arrays whose resolutions are greater than 5, the DNL performance is enhanced at 

least by a factor of 2.  

Meanwhile, it is also interesting to notice the DNL improvement factors perfectly 

match the calculated standard deviation improvement factors as given in Table 2.2. This 

is anticipated because the maximum outlier elimination strategy has made all the 

components close to uniformity after the single-folding operation, and their standard 

deviations are almost the same as shown in Figure 2.3. Therefore, the DNL 

improvements are directly related to the average standard deviation improvements.  

 

2.5.3 Complete-folding with maximum outlier elimination 

By embedding the maximum outlier elimination strategy into the complete-

folding technique, it is able to further increase the linearity performance of the MSB 

array. We shall illustrate this point by performing a statistical simulation, where N is set 

to be 7. Followed by the general process for complete-folding, we employ the 6-time 
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single-folding to the 7-bit MSB array. In addition, 36 extra current sources are added, 

but only 127 current sources are used when the maximum outlier elimination process is 

completed 

For the purpose of studying the linearity improvements by complete-folding, we 

intentionally break up the entire process into 6 steps. Figure 2.7 shows the DNL and INL 

distributions of 10,000 randomly generated 7-bit MSB arrays after each single-folding 

with σMSB=1%. Table 2.5 summarizes the linearity improvement factors after each 

single-folding operation compared to the original static accuracy.  

Noticeably, each single-folding improves the overall DNL and INL; however, the 

improvement factors become less significant after each single-folding. The greatest 

improvement factors are attributed by the first three single-folding operations. 

Comparing to the linearity performance by single-folding and outlier elimination, 

complete-folding and outlier elimination improves DNL and INL by another factor of 3 

and 9, respectively. All of these observations justify our previous statistical analysis.  

 

Table 2.5 DNL and INL improvements after each single-folding in a 7-bit unary-

weighted MSB array 

 

Step 
DNL 

improvement 

INL  

improvement 

Original 1 1 

1st single-folding  

with outlier elimination 
14.00 18.30 

2nd single-folding 28.27 60.87 

3rd single-folding 35.04 107.72 

4th single-folding 38.31 140.22 

5th single-folding 39.86 153.68 

6th single-folding 40.43 157.20 
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Figure 2.7 DNL and INL distributions of 10,000 randomly generated 7-bit MSB arrays 

in 14-bit data converter design after each single-folding with σMSB=1% 
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2.5.4 Matching performance comparisons with state of the art 

Complete-folding with maximum outlier elimination has shown promising 

potential for compensating random mismatch errors in the matching-critical components. 

Here, we will compare our technique with the other two leading techniques in the 

literature. The first technique being considered is called self-calibration [17]. It uses an 

accurate calibration ADC (CALADC) to digitally characterize the data converter's 

output errors and feeds back analog correction signals to the output by a calibration 

DAC (CALDAC). The second technique is called switching sequence post adjustment 

(SSPA) [18]. It places a component having small error in neighbor with the one having 

large error. Outlier elimination is also used in this technique for better matching 

performance.  

 

 
Figure 2.8 Yield estimation for the 7-bit LSB binary-weighted array with different 

linearity conditions 
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Figure 2.9 Yield estimations for the 7-bit MSB unary-weighted array with (a) DNL < 

0.5LSB and (b) INL < 0.5LSB by separately applying self-calibration, SSPA and 

complete-folding techniques 
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In the following discussion, each technique mentioned above is implemented into 

the MSB array and the corresponding area reduction for the 14-bit data converter is 

derived from Monte Carlo simulations. More specifically, we will consider a 14-bit 

current-steering DAC as an example, which possesses 7-7 segmentation, i.e., 7-bit 

unary-weighted MSB array and 7-bit binary-weighted LSB array. The desired yield of 

this 14-bit DAC is set to be 99.7% with DNL < 1LSB and INL < 1LSB. In order to 

achieve such matching performance without employing any techniques, the standard 

deviation of a unit LSB current source has to be at most 0.42%.  

In our simulations, we conservatively assume both MSB and LSB arrays 

contribute to a half of the total error budget (0.5LSB) and they are uncorrelated. We use 

a sufficiently large circuit area for the LSB array to achieve the desired matching 

accuracy. Figure 2.8 presents the yield estimations by Monte Carlo simulations for the 7-

bit LSB array under different linearity conditions. In order to achieve 99.7% yield with 

DNL < 0.5LSB and INL < 0.5LSB, the standard deviation of the unit LSB current source 

has to be at most 1.5%.  

 

Table 2.6 Maximum standard deviations of unit current source to achieve 99.7% yield 

with different linearity conditions in a 7-bit MSB unary-weighted array by different 

techniques 

 

Technique 
σMSB 

DNL <0.5LSB 

σMSB 

INL <0.5LSB 

Chen, Gielen: 

SSPA [18] 
0.25% 0.11% 

Cong, Geiger:  

Self-calibration [17] 
0.7% 0.7% 

This work:  

Complete-folding 
1.6% 1.9% 
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Table 2.7 Current source area comparison by different techniques for a 14-bit current-

steering DAC 

 

Technique 
MSB 

Area 

LSB 

Area 

Total 

Area 

Area 

Reduction 

Large area 16256Su 127Su 16383Su 1 

Chen, Gielen:  

SSPA [18] 
2376.3Su 

a
 10.0Su 2386.3Su 6.9 

Cong, Geiger:  

Self-calibration [17] 
45.7Su 10.0Su 55.7Su 294.1 

This work:  

Complete-folding 
11.2Su 

a
 10.0Su 21.2Su 772.8 

a
The area of additional current sources are included in the MSB area calculation.  

 

On the other hand, we apply different techniques to the 7-bit MSB array. Monte 

Carlo simulations are performed for each case. Before jumping into the simulation 

results, it is worth mentioning the different setup for each technique. In the self-

calibration case, both errors from CALADC and CALDAC are limited to 0.25LSB, 

where CALADC is set to have 16-bit resolution and accuracy and CALDAC has 8-bit 

resolution [17]. Moreover, 36 extra current sources are added for both SSPA and 

complete-folding techniques. Again, only 127 current sources are used by the end of 

outlier elimination process.  

Figure 2.9(a) and (b) illustrate the yield estimations for the 7-bit MSB array by 

applying the three different techniques with DNL < 0.5LSB and INL < 0.5LSB. It is 

shown that for a given standard deviation, complete-folding technique achieves the best 

yield compared to SSPA and self-calibration techniques. In particular, the achieved 

performance is orders of magnitudes better than that using SSPA technique. Based on 

those, we can obtain the corresponding standard deviations of the unit MSB current 
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source for a yield of 99.7% within the desired linearity conditions. The results are 

concluded in Table 2.6. Again, complete-folding technique shows significant advantages 

compared to the other two techniques.  

To be more instructive, we convert both standard deviations of LSB and MSB 

arrays for different techniques into the total area requirement for a 14-bit DAC. The 

calculated results are included in Table 2.7. Su represents the area for the unit LSB 

current source when we employ large area to compensate random mismatch errors, and 

the corresponding total area serves as a reference to obtain area reduction factor for each 

technique. Evidently, the complete-folding technique achieves the largest area reduction 

factor, which is about 773!  

In addition, complete-folding technique will have major advancements in the 

circuit realization. Compared to self-calibration technique, complete-folding shifts most 

of the implementation circuitry into the digital domain which makes it compatible with 

IC technology scaling. On the other hand, complete-folding exhibits much less digital 

complexity than SSPA technique because of the full binary-weighted operation, where 

the binary-to-thermometer decoding is completely eliminated.  

Furthermore, complete-folding technique can also relax the area associated with 

the component interconnections in circuit layout. As we mentioned before, the 

systematic gradient errors are managed by sophisticated layout strategies where each 

component is divided into 4 or more subunits for proper placement and interconnection. 

In the cases of self-calibration and SSPA techniques, the analog area is reduced, which 

gives small gradient errors and thus leads to relaxed layout sophistication. In contrast, 
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complete-folding technique further reduces the analog area which results even smaller 

gradient errors. Most importantly, this technique can be applied to non-Gaussian 

mismatch errors as mentioned in the statistical analysis. Therefore, both local random 

mismatch errors and the small residual gradient errors can be simultaneously handled 

and there is no need for special layout strategies.  

Based upon above, complete-folding features simplicity and compactness of its 

circuit implementation and a significant analog circuit area reduction by using this 

technique can be anticipated in many high-resolution high-accuracy data converter 

designs.  

 

2.6 Conclusion 

In this chapter, we have theoretically shown that the OEM theory together with 

the outlier elimination strategy are very effective for compensating random mismatch 

errors presented in a circuit component population. A new matching technique complete-

folding is developed, where it utilizes the OEM theory multiple times to convert a poorly 

matched unary-weighted component array to a very well matched binary-weighted array. 

For the same yield requirement in a 14-bit DAC design, complete-folding shows a 

spectacular area reduction compared to state of the art.  

Many data converters are particularly susceptible to the component variability 

caused by random mismatch errors which often plays a key role in determining the 

ultimate performance potential and production cost. Multi-bit sigma-delta modulator 

ADC, SAR (successive approximation register) ADC, current-steering DAC, and 
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resistor-string DAC are just a few examples where a very well matched circuit 

component array is required for the success of their data conversion tasks. By applying 

the OEM theory to these data converter designs, all the process dependent mismatch 

errors can be eliminated and as a result, the analog area requirement is greatly reduced. 
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CHAPTER 3 

A 15-BIT BINARY-WEIGHTED CURRENT-STEERING DAC WITH ORDERED 

ELEMENT MATCHING 

 

3.1 Introduction 

High-resolution and high-accuracy DACs can be widely found in various 

medical, instrumentation, and test and measurement applications. For these types of 

circuits, device matching is one of the most critical design parameters. As IC technology 

continues to evolve, the minimum feature size is quickly approaching nanometer scale. 

In these technology nodes and beyond, significant variability, due to process, supply 

voltage, temperature, and stress, imposes grand challenges to achieving accurate device 

matching. With the emerging materials and devices that may provide an alternative to 

CMOS, variability is no less. 

Traditional matching techniques can compensate random mismatch errors to 

certain degrees, but they possess some disadvantages. For example, trimming [11], [19] 

suffers high cost in terms of test equipments and time; calibration [16], [17] requires 

complicated compensation circuitry; switching sequence adjustment [18], [44] offers no 

improvements to differential nonlinearity (DNL); and dynamic element matching (DEM) 

[15], [32] limits its most applications to sigma-delta data converters.   

A totally different approach called ordered element matching (OEM) was 

developed and rigorously proven using order statistics in Chapter 2. It first sorts largely 

mismatched unit elements based on their parameter orders, and then pairs and combines 
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the complementary ordered ones to reduce the random variations significantly. After 

repeating multiple OEM operations in a unary-weighted element array with the presence 

of large variability, a well-matched binary-weighted array can be generated. 

Additionally, an outlier elimination strategy can be incorporated by putting in additional 

elements to enhance the matching performance. The underlying idea for the 

"binarization" process is that, proper interconnections and combinations can provide an 

effective system level matching that is several orders of magnitude better than what the 

original element population can reach. It converts a deadly concern of large random 

variations into a useful resource for improving matching performance.  

In this chapter, a 15-bit current-steering DAC is designed and fabricated in a 

standard 130nm CMOS technology to demonstrate the significant linearity 

improvements by OEM. The DAC has 7-8 segmentation, where OEM is continuously 

applied to the 7-bit unary-weighted MSB array. By doing so, a 7-bit binary-weighted 

MSB array is formed at the end. The 8-bit LSB array has a conventional binary-weighted 

structure, therefore yielding an overall 15-bit binary-weighted DAC. The chip's active 

area is less than 0.42mm
2
, among which the 7-bit MSB array only consumes 0.021mm

2
. 

Measurement results show that the DNL can be reduced from 9.85LSB to 0.34LSB, 

whereas the INL can be reduced from 17.41LSB to 0.77LSB.  

This chapter is organized as follows. In Section 3.2, the OEM binarization and 

outlier elimination and the ensuing effective system level matching are conceptually 

illustrated. Section 3.3 shows the DAC architecture and the associated circuit 
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implementations. Followed by those, measurement results are provided in Section 3.4. 

Finally, conclusions are drawn in Section 3.5. 

 

 

3.2 Concept illustration 

3.2.1 OEM theory 

Random mismatch in CMOS devices is due to inherent variations in the 

semiconductor process. It is by far the largest source of error degrading the performance 

of high-resolution and high-accuracy DACs. Based on the standard mismatch model 

[28], for a MOSFET in saturation with an overdrive voltage Vgs-Vt, the relative variance 

of the drain current is given by: 

 
2

2 22 A 4A
,

2

Vt gs tI
V V

I W L

   
 

  
   (3.1) 

where Aβ and AVt are the process mismatch parameters, and W·L is the gate area. 

Similar formulas for capacitor and resistor mismatch errors also show the variance 

inversely proportional to the area [24]-[26]. This leads to the basis of the widely used 

rule of thumb: quadrupling area for every factor-of-two reduction in random mismatch 

errors.  

Nevertheless, instead of changing the design variables in (3.1), we can reduce 

standard deviation of the mismatch errors by combining a pair of complementary 

ordered components in a population. This process is called OEM. From statistical 

analysis in Chapter 2, the standard deviation can be reduced by a factor of at least 6.5 for 

a sample population size greater than 64 with one-time OEM iteration.  
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Figure 3.1 3-bit binary-weighted array generation based on outlier elimination and two 

OEM iterations from a 9-element unary-weighted array 

 

3.2.2 OEM binarization and outlier elimination 

To take advantage of the significant variance reduction offered by OEM, we can 

continuously apply the OEM operation in a mismatched unit element population, and 

then create a binary-weighted array that achieves an accurate system level matching. A 

3-bit unary-weighted array is taken as an example for the whole process illustration. 

Since outlier elimination is proven to be effective in boosting the matching performance, 

we will start with 9 unary mismatched components. Figure 3.1 shows the outlier 

elimination step, which simply truncates the sorted element array by removing two 
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outliers. The area of each rectangle in the figure denotes the value of each unit element 

with random mismatch error. Followed by outlier elimination, we can apply two OEM 

iterations to the remaining elements.  

The specific steps proceed as follows. First, all elements are sorted in ascending 

order. Then, the complementary ordered elements are paired, and a single element in the 

middle is left alone. Finally, two elements in each pair are summed together, and the 

singleton is moved to the end of the array. Thus, we have generated a new 2-bit unary-

weighted array with each element nearly twice the value of the original elements, and a 

1-bit binary-weighted array. The random variations in the new elements are reduced 

significantly by the OEM theory. If we continue this process to the new unary-weighted 

array, only three elements are left at the end, and they differ by a factor of 2. 

Furthermore, the parameter variations are rapidly diminishing compared to the previous 

step. In general, n-1 OEM iterations are required to convert an n-bit unary-weighted 

array into an n-bit binary-weighted array. 

 

3.2.3 Statistical characteristics of DNL and INL 

The linearity performance advancements by the new matching techniques can be 

examined from the following study. In a mismatched unit element population, different 

element interconnections and combinations can yield different DNL and INL 

characteristics. The study in [45] considered two common cases, i.e., thermometer-coded 

and binary-weighted architectures. Here, we will incorporate OEM binarization and 

outlier elimination with the similar MATLAB simulations. First, 163 normally 
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distributed unit elements are generated with a relative standard deviation of 1%. Then, 

by selecting 127 elements randomly, three different 7-bit structures such as conventional 

binary-weighted, thermometer-coded, and OEM based binary-weighted arrays, can be 

generated. Another 7-bit structure can be also considered in which OEM binarization 

and outlier elimination are used together to the 163 elements. Then, the DNL and INL 

can be obtained in the four different cases, and 10,000 simulations are repeated to find 

the standard deviations of DNL and INL from different code transitions. Figure 3.2 

shows the corresponding simulation results. 

Comparing the conventional binary-weighted array with the thermometer-coded 

array, we can draw the same conclusions as those in [45]. The INL standard deviations 

are about the same for both cases, where the maximum happens at the midscale with the 

value being about 0.5 128 1% 5.7%.    On the other hand, the DNL standard 

deviations are about 1% for all codes in the thermometer-coded array, whereas the 

maximum occurs at the midscale in the conventional binary-weighted array with its 

value equaling to 128 1% 11.3%.   

After applying OEM binarization, the linearity characteristics are improved 

considerably. The DNL standard deviation curve exhibits the similar behavior compared 

to the traditional binary-weighted array. The maximum at the midscale is about 0.33%, 

which is even less than the thermometer-coded case. Alternatively, the INL standard 

deviations also have the maximum coming about the midscale, and its value is around 

0.17%. As incorporating outlier elimination, both metrics are continuously diminishing. 

The maximum DNL standard deviation is around 0.065% and still locates around the 
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midscale. Furthermore, the DNL standard deviations at the other locations become 

comparable to the maximum. In contrast, the maximum INL standard deviation is 

0.057%, and surprisingly, it takes place at the two tails instead of the midscale. 

 

 

Figure 3.2 Standard deviations of (a) DNL and (b) INL in a 7-bit element array which is 

realized by direct binarization, thermometer decoding, OEM binarization, and mixture of 

OEM binarization and outlier elimination 
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The obvious linearity improvements after OEM binarization and outlier 

elimination can be explained by the dramatic error variance reduction shown in Chapter 

2. To obtain the exact theoretical formulas for the statistical characteristics of DNL and 

INL achieved by the new matching techniques, we have to deal with non-identical and 

non-independent order statistics in the analysis, which is extremely difficult. The key 

point for these simulations is to show that, proper interconnections and combinations in 

a population of devices with significant variability can create an effective system level 

matching that is significantly better than what the original devices can achieve. This 

enables us to continue pursuing accurate matching with the presence of large random 

variations in nanometer CMOS and emerging technologies. 

 

3.2.4 Relative error standard deviations of resulting binary bits 

From the above simulations, the maximum INL standard deviation moves from 

the midscale to the two tails while integrating outlier elimination into the OEM 

binarization. It is because that, the largest error standard deviation of the resulting binary 

bits is shifting from MSB to LSB. To illustrate this, we construct the following 

simulation by firstly generating a normally distributed unit element population with a 

relative standard deviation of 1% and sample size of 127∙(1+δ), in which δ is the 

percentage of additional elements (0%≤δ≤100%). Then, outlier elimination is applied to 

truncate the additional elements symmetrically if there are any. The OEM binarization 

takes place after subtracting the average from the remaining 127 elements for a 

meaningful conclusion. The upper limit of 100% is not a fundamental limit; however, it 
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is chosen because that adding more than 100% elements will increase the effective array 

resolution number, and generating a higher resolution binary-weighted array by the new 

techniques will be more cost-efficient than the lower resolution case. 

Figure 3.3 shows the relative error standard deviations of the 7 binary bits for δ 

varying from 0% to 100%. When δ=0%, it indicates that we only use OEM binarization. 

Indeed, the MSB has the largest error standard deviation. Once we include outlier 

elimination with 0%<δ≤100%, the relative error standard deviation associated with each 

bit reduces, and the curvature also changes where the maximum shifts from MSB to 

LSB. It should be also pointed out that the error standard deviations in all cases are much 

less than those of a typical binary-weighted structure.  

 

 

Figure 3.3 The relative error standard deviations of the resulting binary bits after 

applying OEM binarization with outlier ratio δ varying from 0% to 100% 
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3.2.5 Optimal utilization of outlier elimination 

As we can see, outlier elimination is highly beneficial to enhance the linearity 

performance. In Chapter 2, we thoroughly studied the case when δ=27%. This was 

referred as the maximum outlier elimination. The phrase is somewhat a misnomer. It is 

not about achieving the maximum linearity performance, but rather stands for the 

maximum number of outliers that can be thrown away without causing the outer pairs to 

have smaller error standard deviations than the middle pairs after a single OEM iteration, 

which is an arbitrary threshold. 

For the optimal use of outlier elimination, we will consider the following 

simulation. A fixed analog area is pre-given, and we divide it into (2
n
–1)∙(1+δ) elements. 

The variable n represents the number of bits for the desired element structure, and it 

varies from 3 to 9. At each n value, δ will change from 0% to 100%. For each 

combination of n and δ, we will use OEM binarization and outlier elimination in the 

corresponding element array to obtain the maximum DNL and INL, and then normalize 

them to those linearity quantities from a conventional binary-weighted structure under 

the same resolution and area constraints. It is worth mentioning that the area of the unit 

element may vary in different cases since the entire analog area is a fixed number. 

Alternatively, we can think that the outlier elimination is cost-free in terms of the analog 

area from this setup. 

Figure 3.4 gives both of the normalized maximum DNL and INL corresponding 

to different cases. It is easy to see that outlier elimination becomes much more effective 

for the element array whose resolution is greater than 4. Furthermore, the most efficient 
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linearity improvement comes at δ=10% in a single case. After this point, there are still 

improvements, but more outliers need to be added, and the associated design overhead 

may exceed the actual analog area reduction, e.g., digital circuitry area.  

The nonlinearity reductions before δ=27% can be understood since we have 

eliminated the elements that contain large error standard deviations. Then, we should not 

have any improvements as increasing δ more. From Figure 3.4, this is certainly not the 

case. The slight linearity improvements afterwards can be explained as follows.  

Outlier elimination will cause the LSB possess the largest error standard 

deviation as seen in Figure 3.3. Then, the most nonlinearity comes from this lowest bit 

that essentially represents the median element of the original population. The asymptotic 

standard deviation of the median in a sample population can be written [40] by:  

median unit ,
2N


        (3.2) 

where N is the total number of elements, and σunit is the standard deviation of the 

original population. From (3.2), we note that as increasing the sample size by including 

more elements, the standard deviation of the median tends to diminish by the factor of 

N.  This explains the linearity improvements after δ passes the theoretical limit of 27%.  

The same property holds for all ordered elements in which their error standard deviations 

keep reducing by increasing the sample size. Then, we can use this to explain the 

phenomenon in Figure 3.3, where the overall standard deviations drop every time as 

increasing δ. From these observations, we can obtain another statement such that a single 
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OEM iteration roughly reduces the error standard deviations by a factor of 2  while 

doubling the sample size. This fact was actually shown in Figure 2.2 and 2.3. 

 

 

Figure 3.4 Normalized (a) DNL and (b) INL after OEM binarization and outlier 

elimination with different resolutions of element array and outlier ratios 
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3.3 DAC architecture 

3.3.1 General considerations 

In order to demonstrate the significant linearity enhancements on silicon, we 

design a 15-bit current-steering DAC with 7-8 segmentation as shown in Figure 3.5. The 

7-bit MSB array has the unary-weighted structure. For the optimal outlier elimination as 

suggested in Figure 3.4, 10% additional elements are included to achieve the best 

tradeoff between linearity performance and overhead. This would give a total number of 

140; however, 144 unit current sources are used in the MSB array to form a 12×12 

matrix. Then, according to the grouping information from OEM binarization and outlier 

elimination, only 127 of the current sources are decoded in a binary-weighted array with 

the help of some digital circuits. On the other hand, the 8-bit LSB array is made of the 

conventional binary-weighted structure. Therefore, the 15-bit DAC is operating as a 

binary-weighted one, and Figure 3.6 illustrates the unit current cell design.  
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Figure 3.5 15-bit binary-weighted DAC architecture 
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Figure 3.6 Schematic of the unit current cell 

 

 

If the design target is to achieve INL ≤ 0.5LSB with a yield of 99.7%, the relative 

standard deviation of the LSB current source has to be no larger than 0.15% for a 15-bit 

binary-weighted DAC. With the new matching techniques, the stringent matching 

requirement can be relaxed significantly. In this specific case, we will allocate half of the 

error budget between the MSB and LSB arrays. Based on Monte Carlo simulations, the 

relative standard deviations of the unit current source within the two segments are 0.42% 

and 0.84%, respectively. To be more instructive, the current source area reduction factor 

is around 1400! Table 3.1 summarizes the current source gate area allocations for 

different segments.  

Besides the random errors, systematic errors can also cause nonlinearity. Some 

special techniques are used to ensure they are within acceptable levels.  
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 All the current sources are made of cascoded structures to ensure they 

have sufficiently high output impedance.  

 Each unit MSB current source is divided into 4 subunits, and common 

centroid layout is applied. Moreover, two rows and columns of dummy 

current cells are used to surround the main current source matrix for 

minimizing edge effects [13]. The MSB layout floorplan is shown in 

Figure 3.7.  

 Wide ground wires are used for the current sources to reduce gradient 

errors due to the ground resistance.  

 Bias voltage calibration is applied to the 8-bit LSB array to compensate 

the inter-segment gain errors, which cause large jumps during the LSB to 

MSB transitions as shown in Figure 3.8. The bias voltage will be tuned to 

ensure the average MSB current is equal to 2
8
 multiplying by the LSB 

current. A detailed on-chip implementation can be found in [17]. 

 

Table 3.1 Current source gate area allocations for different segments 

 

Segments Current sources Gate area (µm
2
) 

MSB array MSB unit 32 

LSB array 

LSB 8 1024 

LSB 7 512 

LSB 6 256 

LSB 5 128 

LSB 4 64 

LSB 3 32 

LSB 2 16 

LSB 1 8 
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Figure 3.7 Layout floorplan for the 7-bit MSB DAC 

 

 
Figure 3.8 DAC transfer curves with and without inter-segment gain errors between the 

MSB and LSB arrays 

 

 

3.3.2 Digital circuitry implementations 

To realize both OEM binarization and outlier elimination, two key functions 

need to be allowed. One is to rank all the unit MSB current sources, while the other one 

is to identify each current source to the appropriate groups based on the binarization 
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results. Since [18] has already proposed an on-chip solution for ranking current sources, 

we will not repeat the circuits here but replace them with off-chip electronics and a 

FPGA board. It should be pointed out that the digital sorting controller would be much 

simpler here because of the binary-weighted operation if an on-chip solution is desired.  

Each current source can end up with anyone of the (n+1)-bit input lines, i.e., the 

actual n-bit input plus one extra bit to indicate outlier throwaway. This requires, for each 

current source, an (n+1)-to-1 digital multiplexer and a log2(n+1)-bit D flip-flop to store 

the corresponding address code to indicate the final element destination. Since the total 

number of the MSB unit current sources is 144 in this work, 144 8-to-1 multiplexers and 

144 3-bit D flip-flops are demanded. Figure 3.9 illustrates the detailed circuit blocks of 

the 7-bit MSB array. 

As shown in Figure 3.9, the 144 D flip-flops are connected in a daisy chain 

where the inputs of the preceding ones come from the outputs of the succeeding ones. 

Equivalently, the system can be viewed as a serial-in parallel-out shift register. Then, 

144 address codes can be sequentially loaded into the DAC. Table 3.2 shows the 

corresponding address code and the number of current sources for different bit lines 

during the normal conversion phase. For example, 64 out of 144 current sources belong 

to the highest bit D[14] with address codes “111”, and thus they are controlled 

simultaneously based on the code assigned to D[14]. The same idea can be applied to 

any other bit lines. It is worth mentioning that address codes “000” correspond to the 

outliers that are banned to use during the DAC normal conversion time. With such 

arrangements, the 7-bit MSB DAC will operate in a binary-weighted manner. 
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Figure 3.9 Circuit implementation of 7-bit MSB array 
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Table 3.2 Address code mapping during normal conversion phase 

 

Address code Number of elements Digital input lines 

000 17 Don't Care 

001 1 D[8] 

010 2 D[9] 

011 4 D[10] 

100 8 D[11] 

101 16 D[12] 

110 32 D[13] 

111 64 D[14] 

 

Table 3.3 Address code mapping during comparison phase 

 

Address code Number of elements Digital input lines 

001 k
a
 D[8] 

010 k
a
 D[9] 

110 72-k
a
 D[13] 

111 72-k
a
 D[14] 

a
The variable k depends on the stages of OEM iterations,  

where k = 1, 2, 4, 8, 16, and 32. 

 

 

3.3.3 Current source comparison 

While in the current source comparison phase, 144 specific address codes will be 

loaded. To be more instructive, a variable k is introduced here. The address codes to the 

144 current sources and the corresponding digital bit lines are shown in Table 3.3.  Our 

goal is to compare the current sources with address code 001 to those with 010. The 

variable k is determined by the stages of OEM operations. Based on the theory, we need 

6 OEM iterations in order to generate 7 binary-weighted current sources out of the 144 

unit current sources. Thus, k can be set to 1, 2, 4, 8, 16, and 32. 
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Suppose that we are at the first time OEM iteration, then k = 1. We set D[8] and 

D[9] to be 1 and 0, respectively. D[13] and D[14] are assigned to 1 and 0, respectively. 

Furthermore, all the other digital input bits are 0.  From this setup, each output side will 

have 72 MSB current sources flowing. Then, the resulting differential current output can 

be stored. Followed by that, we will adjust D[8] and D[9] to be 0 and 1, respectively, and 

keep all the other inputs as the same as before. Consequently, we have swapped the 

output sides for the current sources with address codes 001 and 010. Subtracting the 

previously stored differential value from the present one, we can have current difference 

doubled between the comparing current sources, thus obtaining the relative ranks. This 

process can be repeated for any other current sources at any stages of OEM iterations. 

Therefore, the complete current source orders can be easily attained by an efficient 

merge-sort algorithm implemented on the FPGA.  

It should be pointed out that the described operation above is similar to the on-

chip implementation shown in [18] but with different digital control mechanisms. 

Therefore, their current comparator can be directly used in our case. Furthermore, thanks 

to the binary-weighted operation, the sorting controller can be much simpler here since 

there are only 7 possible MSB routing address codes and it requires no thermometer 

decoder. 

 

3.4 Board design 

The 15-bit binary-weighted current-steering DAC is implemented in a 130nm 

digital CMOS process with 1.2V supply voltage. The full-scale current is 5mA driving 
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either external 50Ω load resistors or transformers directly. Figure 3.10 shows the die 

photograph of the chip. The active area is less than 0.42mm
2
, among which the 7-bit 

MSB current source area is well within 0.021mm
2
.  

The chip is available in a 52-pin QFN package. Figure 3.11 illustrates the chip's 

bonding diagram, while Table 3.4 describes the functionalities of all the terminals. In 

order to interact with the chip, we need to provide power supplies, bias current inputs, 

digital data inputs, clock interface, and output configuration.  

 

 

 
 

Figure 3.10 Die photograph of the chip 
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3.4.1 Power supplies 

 It is important to give clean and stable power supplies to the DAC. Direct power 

sources (Agilent E3631A) are used for this purpose. Meanwhile, the analog, digital and 

clock sections of the board will use the separate supply sources. It prevents the noisy 

signals to interrupt with the quiet analog signals. Additional bypass capacitors and ferrite 

beads are applied when the power supplies travel to the board and to the chip’s 

terminals. By doing so, high frequency noise can be suppressed. Power plane is not used 

here since the routes to the power terminals are all simple, and the associated currents 

are small.  

 

 

Figure 3.11 Chip bonding diagram 
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Table 3.4 Chip terminal functions 

 

Terminal 
Type Description 

Name NO. 

DGND 
1, 3, 12, 

25, 51 
Power 

Digital ground return for the internal digital 

circuitry. 

DVDD 
2, 13, 24, 

26, 52 
Power 

Digital supply voltage for the internal digital 

circuitry (1.2V). 

VL 4 Power 
Low supply voltage for the DAC's switch 

buffers. 

VH 5 Power 
High supply voltage for the DAC's switch 

buffers.  

AGND 6, 16 Power 
Analog ground return for the internal analog 

circuitry. 

VLD 7 Power 
Low supply voltage for the linearization 

DAC's switch buffers. 

VHD 8 Power 
High supply voltage for the linearization 

DAC's switch buffers.  

IOUTP 9 Output DAC current output. 

IOUTN 10 Output Complementary DAC current output 

VCASLSB 11 Input 
Bias input for the cascode transistors in the 8-

bit LSB DAC.  

AVDD 15 Power 
Analog supply voltage for the internal analog 

circuitry (1.2V). 

VCSLSB 17 Input 
Bias input for the current source transistors in 

the 8-bit LSB DAC. 

VCASMSB 
18, 19, 21, 

22 
Input 

Bias inputs for the cascode transistors in the 

7-bit MSB DAC. 

VCSMSB 20 Input 
Bias inputs for the current source transistors 

in the 7-bit MSB DAC. 

VCSLIN 23 Input 
Bias inputs for the current source transistors 

in the linearization DAC. 

ENB 27 Input 
Active low. Enable data written to the D flip-

flop array. 

RSTB 28 Input Active low. Reset the D flip-flop array. 

CLKCAL 29 Input 
Positive-edge triggered. Clock input for the D 

flip-flop array. 

ADR[2:0] [30:32] Input Data inputs for the D flip-flop array.  

D[15:9] [33:39] Input Data inputs for the 7-bit MSB DAC. 

DX 40 Input Don't care. Extra data bit indicating outliers.  

D[1:8] [41:48] Input Data inputs for the 8-bit LSB DAC. 

CLK 49, 50 Input 
Clock inputs during the DAC's normal 

conversion time. 
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 To provide quick ground current returns when analog, digital and clock sections 

communicate, all the grounds will join together at the DAC. Furthermore, a solid ground 

plane is applied to minimize the inductance due to the ground loop. For the best practice, 

a split ground plane is started for the analog, digital, and clock signals. Then, the ground 

plane is connected via 0-ohm resistors. In such arrangements, the signal return currents 

can flow next to the signal traces with the minimum path impedance.  

 

3.4.2 Bias current inputs 

 Sufficient bias currents are required for the current source and cascode transistors 

in the MSB and LSB arrays. Here, an on-board voltage reference is used to generate the 

bias currents with the help of high precision amplifiers. Figure 3.12 illustrates the 

schematic of a low noise current source. RSET can be partially tunable so that the desired 

operating points can be obtained with minor adjustments. It should be noted that proper 

current mirrors are applied on board to generate multiple current copies with high 

precision transistor networks. Meanwhile, the bias inputs are made of thick trace lines to 

minimize the voltage drops.  

 









RSET

Voltage 

Reference C

R

IOUT  

Figure 3.12 Schematic of a low noise current source 
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3.4.3 Digital data inputs 

The digital data inputs (D[1:15]) are provided by Lattice ECP3 Versa board. The 

board's output levels are 3.3V; however, the DAC's input voltage compliance range is 

only around 1.2V. Therefore, a 3.3V-to-1.2V level translator has to be inserted on our 

board between the FPGA and DAC. In this case, we use a 16-bit edge-triggered D flip-

flop (SN74AUC16374) that is able to handle 3.3V digital inputs and generate 1.2V 

outputs. Another reason for using this chip is that the 15-bit data can be aligned by the 

clock signal before going into the DAC. Furthermore, all the digital lines need to have 

exactly the same length for the same delays, and they are designed with 50Ω 

characteristic impedance.  

The other digital inputs such as ENB, RSTB, CLKCAL and ADR[2:0] are at much 

lower operation speed. Thus, they are not as critical as the 15-bit inputs, but a buffer 

(SN74AUC16244) is still needed to translate the voltage level from 3.3V to 1.2V.  

Meanwhile, 22Ω resistors are connected in series with all the digital lines for signal 

integrity purposes.   

 

3.4.4 Clock interface 

 Depending on the speed and performance targets, clock performance can be 

critical. For low speed operations, we use the clock source provided by the FPGA board 

directly. On the other hand, the high speed operation requires good jitter performance, 

and thus we use a precision clock conditioning board (LMK04002BEVAL) to satisfy the 

criteria. Since we need to supply clock signals for both of the DAC and 16-bit edge 
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triggered D flip-flop, a clock distributor chip (LMK00105) is used on board. The chip is 

powered with a 3.3V DC source, and a resistor divider is used for the clock path to the 

DAC to meet the input compliance range. Figure 3.13 and 3.14 show the clock setups for 

the DAC’s low and high speed operations, respectively. It should be noted that the clock 

signals after the distribution chip should have the same delays as the 15-bit data lines 

after the D flip-flop. Furthermore, the single-ended clock lines are terminated with 50Ω 

resistors, while the differential lines are terminated with 100Ω resistors.  
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Versa Board 

LMK00105

Clock Distributor

CLK_FPGA

D1-

D15

D1-

D15

16-bit 

Edge-Trig. 

Flip-flop

15-bit

DAC

CLK_DACCLK_FF

 

Figure 3.13 Clock setup for the DAC’s low speed operations 

 

Lattice ECP3 

Versa Board 

LMK00105

Clock Distributor

CLK_FPGA

D1-

D15

D1-

D15

16-bit 

Edge-Trig. 

Flip-flop

15-bit

DAC

LMK04002BEVAL

Clock Conditoner

CLK_DACCLK_FF

External dirty clock

 

Figure 3.14 Clock setup for the DAC’s high speed operations 



www.manaraa.com

74 

 

3.4.5 Output configuration 

 To achieve the best DAC performance, it is critical to set the correct output DC 

bias levels with the desired impedance loads. For static performance tests, two external 

50Ω resistors are directly connected to the DAC’s complementary outputs in series with 

1.2V power supply voltages as illustrated in Figure 3.15. This will generate a peak-to-

peak differential voltage of 0.5V with 5mA full-scale current. Then, a high precision 

ADC board (ADS1259EVM-PDK) or digital multimeter (Agilent 3458A) can be used to 

measure the DAC’s outputs.  

For dynamic performance tests, a transformer with an impedance ratio of 4:1 is 

connected to the differential DAC outputs as shown in Figure 3.16.  It converts the fully 

differential signals to a single-ended signal which will be sent to a spectrum analyzer 

with a 50Ω resistor load. The middle point of the primary turn of the transformer is 

connected to a 25Ω resistor in series with the 1.2V power supply voltage. By doing so, a 

DC path is created to let the current flow. Furthermore, it ensures that the output 

voltages are within the compliance range. The 50Ω load resistance will be transformed 

to 200Ω by the impedance ratio from the secondary side to the primary side. Taking that 

with two 100Ω resistors in parallel, the equivalent AC resistance is still 50Ω on the 

single output side. Therefore, the differential peak-to-peak voltage level is still 0.5V; 

however, since the voltage ratio is 2:1 for the 4:1 impedance ratio transformer, the 

equivalent single-ended voltage on the secondary side will be halved, which generates a 

0.25V peak-to-peak signal. The differential output signals are routed differentially so 

that they experience the same feedthrough and thermal gradient errors.  
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Figure 3.15 Output configuration for the DAC’s static performance tests 
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Figure 3.16 Output configuration for the DAC’s dynamic performance tests 

 

3.4.6 Board overview 

 Overall, the printing circuit board (PCB) contains 4 layers due to the 

characteristic impedance requirements. Layer 1 and 4 are for main signal routings, while 

layer 2 and 3 are ground planes. With this arrangement, the ground return loops can be 

well controlled. Layer 3 is usually used as the power plane; however, in our case, the 

power routings are quite easy and the associated current is small as mentioned before, 

and therefore thick trace lines are implemented for power lines. Figure 3.17 shows the 

photograph of the final PCB, 
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Figure 3.17 Photograph of testing PCB 

 

 

In order to achieve 15-bit performance, everything needs to be carefully 

designed. Due to the lack of experience, two rounds of PCB are fabricated. The 

following list includes some advice based on the mistakes and inconvenience from the 

first PCB design. This can prevent others to repeat the same mistakes.  

 Select parts carefully based on the dimensions, ratings, usability and price.  

 Be aware of part orientations which may cause inconvenience during testing.   

 Make sure that the parts' footprints exactly match the ones in the data sheets. 

 Draw a good floorplan before the PCB layout, and consult with experienced 

PCB designers to oversee any issues.   
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 Use sockets for the chip under test if many chips need to be measured. This 

saves the effort and time to solder packages such as QFN, but the speed may 

be affected depending on the socket quality. 

 Take care of the synchronizations between digital input and clock signals. 

 Design the high speed trace lines with appropriate characteristic impedance, 

i.e., 50Ω for single-ended lines and 100Ω for fully differential lines.  

 Route DAC's complementary outputs differentially to minimize offset errors.  

 Place bypass capacitors to the device under test as closely as possible.  

 

Even though a great deal of time has been spent, the high speed performance is 

still not as good as expected. There are many things that need to be optimized on the 

board design. However, a major bottleneck for us is that CMOS data transmitting is used 

on board instead of differential signaling such as LVDS and CML. With all the parasitic 

capacitance, the digital input and clock signals are not well preserved. This is something 

that we need to take care of for the next chip fabrication.  

 

3.5 Measurement results 

With random binary group assignments to the 144 MSB unit current sources, the 

DAC's DNL and INL are 9.85LSB and 17.41LSB, respectively. However, after loading 

address codes obtained by OEM binarization and outlier elimination, the DNL and INL 

can be reduced to 0.34LSB and 0.77LSB, respectively. Figure 3.18 plots the static 

linearity performance before and after the new matching techniques.  
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Figure 3.18 Static linearity performance of the 15-bit binary-weighted DAC (a) before 

and (b) after OEM binarization and outlier elimination  
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Table 3.5 shows the matching performance advancements compared to state-of-

the-art techniques, e.g., [17] and [18]. Since we did not implement the sorting controller 

on chip, the area is taken out of the total chip area for [18] to maintain a fair comparison. 

On the other hand, the current comparator is so small that it does not affect the overall 

area consumption. Meanwhile, it is worth mentioning that the authors in [17] did not 

account for the area of 16-bit sigma-delta ADC.  

Figure 3.19 shows the measured DAC's output spectrum performance before and 

after OEM binarization and outlier elimination with 0.4MHz signal frequency and 

10MHz sampling frequency. The SFDR can be increased from 67dB to 84dB.  

 

Table 3.5 Matching performance comparison with state of the art 

 

Specifications Self-Cal. [17] SSPA [18] OEM Binarization 

Resolution 14-bit 14-bit 15-bit 

Structure 
6b Unary MSB 

8b Binary LSB 

7b Unary MSB  

7b Binary LSB 

7b Binary MSB  

8b Binary LSB 

Technique 
Calibrate MSB  

current values 

Adjust MSB  

switching sequence 

Regroup MSB  

current sources 

Process CMOS 130nm CMOS 180nm CMOS 130nm 

Power supply 1.5V 1.8V 1.2V 

Full current 10mA 16mA 5mA 

DNL 
5LSB (before) 

0.34LSB (after) 

0.63LSB (before) 

0.56LSB (after) 

9.85LSB (before) 

0.34LSB (after) 

INL 
9LSB (before) 

0.43LSB (after) 

1.37LSB (before) 

0.76LSB (after) 

17.41LSB (before) 

0.77LSB (after) 

Area
 

0.1mm
2 a

 2mm
2 b

 0.42mm
2
 

a
The area of 16-bit sigma-delta ADC was not taken into account. 
b
The area of sorting controller is taken out of the total chip area. 
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Figure 3.19 Output spectrum of the 15-bit binary-weighted DAC (a) before and (b) after 

OEM iterations with fsamp = 10MHz and fsig = 0.4MHz 
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The SFDR versus input frequencies at the 10MHz sampling frequency is shown 

in Figure 3.20. As we can see, the SFDR performance quickly falls off while increasing 

the frequencies. This is because that many error sources that cause high frequency 

nonlinearities were not taken into account during the design phase, e.g., timing errors. 

Furthermore, lack of knowledge on high speed PCB designs was another limitation.  

However, all of these can be taken care of by many existing design techniques such as 

[45]-[54]. By combining these techniques with the new matching strategies, the high 

frequency linearity is expected to be extended since the nonlinear parasitic capacitance 

associated with the large area is greatly reduced.  

 

 
 

Figure 3.20 SFDR vs. input frequencies at the 10MHz sampling frequency 
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3.6 Conclusion  

    In order to confirm the OEM theory on silicon, a 15-bit binary-weighted 

current-steering DAC is fabricated in a 1.2V 130nm digital CMOS process. The active 

area of the chip is less than 0.42mm
2
. More importantly, the MSB current source area is 

well within 0.021mm
2
. Experimental results have shown that the DAC's DNL and INL 

can be both reduced significantly. The new matching techniques only demand the 

component orders, thus requiring a comparator and some digital circuitry. Such 

implementation scales well with IC technologies, which may offer one alternative 

solution to random mismatch errors in the variability-excessive processes.   
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CHAPTER 4 

NEAR-OPTIMAL BINARIZATION AND SEGMENTATION FOR DATA 

CONVERTER DESIGNS 

 

4.1 Introduction 

 In Chapter 2 and 3, we proposed OEM binarization and outlier elimination, and 

demonstrated the ideas on a high-resolution and high-linearity DAC design. It proves 

that correct interconnection and combination from a population of elements with 

significant variability can produce an effective system level matching. On the other 

hand, it raises the question of whether the binarization strategy is optimal in terms of the 

complexity and matching performance.  

Furthermore, the new matching strategies still require careful considerations of a 

tradeoff between resource and performance. It is because that the associated design 

complexity grows exponentially and becomes practically difficult as the resolution bits 

increase. The same issue happens for many high-resolution data converters regardless of 

the implementation details [10], [14], [16]-[19], [55]-[60]. A general solution is to use 

segmented structures. For various circuit implementations, different segmentation 

strategies [45], [61]-[63] may be required to achieve the optimal tradeoff. A systematic 

study on how to segment, i.e., the number of segments, the number of bits in each 

segment, and the resource allocation between segments will be extremely valuable in 

assisting the circuit designers. Moreover, this study could lead to a common 

segmentation approach to any data converters with given design techniques and their 
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associated implementation details.  

 This chapter is organized as follows. In Section 4.2, the binarization problem in a 

population of unit elements is formally set up, and different heuristic solutions are 

proposed since the problem is believed to be NP-hard. Then, MATLAB simulation 

results show the achieved matching performance by different heuristic methods. OEM 

binarization features the least complexity and achieves the similar matching performance 

compared to the others. In Section 4.3, we use the implementation details from Chapter 3 

to formulate multiple optimal segmentation problems for OEM binarization, each of 

which contains an emphasis corresponding to a different design scenario. These 

optimization problems belong to mixed-integer nonlinear programming. Solving them is 

awfully hard [64], [65]. A simple but effective heuristic approach to one of the posed 

problems is presented, which uses a segmented binarization strategy to achieve a near-

optimal tradeoff between resource and linearity performance. To explain the heuristic 

optimization process, we use a 14-bit binary-weighted current-steering DAC design as 

an example. Following the approach, we provide near-optimal segmentation solutions 

for a variety of data converters' resolutions. Finally, Section 4.4 concludes this chapter.  

 

4.2 Near-optimal binarization 

OEM binarization and outlier elimination show great advantages in the matching 

performance improvements. However, they only represent one way of reorganizing the 

unit elements in a population. There are many other binary grouping strategies that 

perhaps offer better matching performance. In this section, we will thoroughly study the 
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binarization problem and different heuristic methods.  

 

4.2.1 Binarization problem setup 

A unary-weighted element array S is given with sample size of m=2
n
‒1. The 

parameter value of each unit element is defined as xi (1 ≤ i ≤ m), and random mismatch 

is the only considered source of error. All the elements are grouped into n disjoint 

nonempty subsets Sj (1 ≤ j ≤ n) with certain cardinality specifications such that:  

12 ,j

jS       (4.1) 

1

,
n

j

j

S S


      (4.2) 

1

.
n

j

j

S


       (4.3) 

Alternatively speaking, the original n-bit unary-weighted array is converted into 

an n-bit binary-weighted array. The summed elements associated with each bit have new 

defined weights wj, where 

1

.
m

j i ij

i

w x b


      (4.4) 

bij is a binary decision variable matrix that determines the corresponding element group 

information in each bit j. Because of the subsets' cardinality specifications and disjoint 

nonempty constraint, we have the following relationships: 

1

1

2 ,
m

j

ij

i

b 



      (4.5) 
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1

1,
n

ij

j

b


      (4.6) 

 0,1 .ijb       (4.7) 

Each adjacent bit weight should approximately differ by a factor of 2. The 

objective is to find an optimal binarization strategy that gives the minimum INL. Here, 

we will use the end-point fit line method to compute the INL at code D as: 

1

INL ,
n

D j

j

w D Dx


       (4.8) 

1

1
.

m

i

i

x x
m 

       (4.9) 

Then, the INL is defined as: 

 maxINL INL max INL .D D     (4.10) 

The optimization problem can be properly formulated as follows: 

 

1

1 1

minimize   INL

subject to 2 ,  1,

                     0,1 .

m n
j

ij ij

i j

ij

b b

b



 

 



     (4.11) 

The binarization process will be more efficient if we choose the 2
n
-1 elements 

from a bigger population since those largely defected elements can be eliminated. We 

can redefine the sample size of the original unary-weighted array as 

 1 2 ,nm       (4.12) 

where δ is the outlier ratio as defined in Chapter 3 and 0 < δ < 1. The mathematical 

operator  represents round function. Here, we still want to find an optimal 
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binarization strategy that achieves the best linearity performance with the same 

cardinality constraints; however, not all the elements will be selected in this case. Then, 

the optimization problem can be reformulated as follows: 

 

1

1 1

minimize   INL

subject to 2 ,  1,

                     0,1 .

m n
j

ij ij

i j

ij

b b

b



 

 



     (4.13) 

 

4.2.2 Heuristic methods 

The optimization problems (4.11) and (4.13) are both NP-hard to solve. It is 

because that they contain multiple cardinality-constrained subset sum problems which 

are known to be NP-complete [66]. For example, in order to obtain the MSB, we need to 

choose 2
n-1

 out of m unit elements so that a minimum INL can be achieved at the end. 

Therefore, it is impossible to solve the problems with limited computational capacity. 

Heuristic approaches must be used in this situation.  

One of the heuristic approaches proceeds as follows: 

1. Measure each unit element 

2. Compute the parameter average x  

3. Choose 2
n-1

 unit elements whose summed weight is the closest to 
12n x    

4. Choose 2
n-2

 unit elements whose summed weight is the closest to 
22n x   

among the remaining elements 

5. Repeat the selection steps until there is only 1 element left.  
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The complexities of element measurement and average computation are both the same, 

i.e., O(m). The complexities of element selections are different in different steps. They 

depend on the number of selected elements and the total number of elements in the set. 

However, it is obvious that step 3 consumes the most time since the binomial coefficient 

is C(2
n
-1,2

n-1
), and thus the complexity goes up extremely fast as n increases. As one can 

see, this approach will not be practically doable once n is greater than 4. 

Another heuristic approach takes the reverse direction as the above one: 

1. Measure each unit element 

2. Compute the parameter average x  

3. Choose 1 unit elements whose summed weight is the closest to x   

4. Choose 2 unit elements whose the summed weight is the closest to 2 x  

among the remaining elements 

5. Repeat the selection steps until there are only 2
n-1

 elements left.  

In this case, the most time consuming part is when we are selecting 2
n-2

 elements among 

the remaining elements. Similarly, we have the running time to be extremely long when 

n is large. Therefore, it will still not be practically doable once n is greater than 4. 

The third heuristic approach is actually the OEM binarization as proposed in 

Chapter 2, which involves the following steps:  

1. Sort all unit elements, and group the median element into bit 1 

2. Perform the first OEM iteration which is to pair and sum the 

complementary ordered elements 

3. Resort the new elements, and group the median element into bit 2 
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4. Continue with the OEM iterations until there are only 2
n-1

 elements left.  

Obviously, the first sorting operation is the most time consuming part in the approach, 

where the running time is of order O(m·logm) if an efficient sorting algorithm is applied, 

e.g., merge-sort. This solves the impractical issues for higher n values posed by the other 

two approaches. For example, at n = 7, the complexity order is no less than 1000. 

The fourth heuristic approach is an upgraded version of the OEM binarization. 

The associated steps are summarized as follows: 

1. Sort all unit elements, and group the most accurate element to x  into bit 1 

2. Perform the first OEM iteration which is to pair and sum the 

complementary ordered elements 

3. Resort the new elements, and group the most accurate element to 2 x  

into bit 2 

4. Continue with the OEM iterations until there are only 2
n-1

 elements left.  

The only difference from the third approach is to use the most accurate element instead 

of the median. The computational complexity is about the same as the previous case, but 

we need to measure each element here.  

 If more unit elements are included in the population, we can integrate the outlier 

elimination strategy. However, it is a little different for the first and second heuristic 

approaches since we can choose the best groups in a larger population and leave the 

undesired ones behind. Of course, by putting extra elements, it adds another dimension 

for the optimization difficulty since we need to decide how many extras to include, 

which ones to throw away, and how to group for the best performance.  
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Figure 4.1 DNL and INL distributions of 10,000 randomly generated 4-bit MSB arrays 

in a 14-bit DAC design after different binarization heuristics 
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Figure 4.2 DNL and INL distributions of 10,000 randomly generated 7-bit MSB arrays 

in a 14-bit DAC design after the third and fourth binarization heuristics 

 

 

4.2.3 Matching performance comparison 

In order to compare the linearity performance of these heuristic approaches, we 

have modeled a 14-bit DAC. Since the first two approaches are hard to simulate when n 

is larger than 4, we will segment the DAC with 4-bit unary-weighted MSB array and 10-

bit binary-weighted LSB array. Then, four different binarization approaches are applied 

in the 4-bit MSB array. The relative standard deviation of the unit MSB element is 

chosen to be 1%. After running 10,000 simulations, the MSB DNL and INL 

performance for different binarization approaches are concluded in Figure 4.1. 

Furthermore, the original static accuracy by random binarization is also included as a 
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reference to compare. Based upon Figure 4.1, we can see that all the heuristic 

approaches give the same order of magnitude linearity performance, and the second 

approach achieves slightly better performance than the others. We can also compare the 

third and fourth heuristics in an array with larger resolution bits, e.g., 7. All the other 

simulation parameters stay the same as before. Figure 4.2 illustrates that the fourth 

heuristic is slightly better than the third one.  

However, as discussed above, the first and second approaches are not efficient in 

terms of computational power. Thus, it is not realistic to implement them since the 

associated hardware design can be a disaster. On the other hand, the third and fourth 

approaches can be easily implemented. In Chapter 3, we have demonstrated a circuit 

realization for the third approach using a comparator and some digital circuitry. For the 

fourth approach, we need to add a measurement mechanism to obtain the most accurate 

element. This certainly adds one degree of difficulty for the implementation. Therefore, 

the third approach, i.e., OEM binarization, features simplicity and efficiency in both 

practical and computational complexity and achieves decent matching performance 

compared to all the other heuristic approaches. Since the optimal binarization solution is 

quite difficult to obtain, OEM binarization provides an effective heuristic solution even 

though it is sub-optimal.  

Additionally, outlier elimination can be integrated to improve the matching 

performance as proven in the previous chapters.  In the third and fourth heuristics, we 

can intentionally include additional number of unit elements and then eliminate both 

tailed ones after sorting to obtain exactly 2
n
-1 elements for the binarization process. 
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Adding more elements will also help the first two heuristics, since the selections can be 

made in a larger population and the undesired ones can be left out at the end, but it is 

slightly different from the outlier elimination strategy which happens at the beginning of 

the binarization process. The simulations for the effects of outlier elimination will not be 

repeated here since we have thoroughly studied them in both Chapters 2 and 3. 

 

4.3 Near-optimal segmentation 

To take advantages of the new matching strategies while still consuming a low 

implementation cost, we need apply segmentation to compromise such situation. In the 

previous chapters, we gave an arbitrary segmentation and calculated the relative analog 

area reduction which might not necessarily represent the proper way to achieve the best 

tradeoff between the overall area and linearity performance. In this section, we will set 

up multiple versions of optimal segmentation problems with the implementation details 

given in Chapter 3. Each of the optimization problems will correspond to a different 

design scenario. Since they are incredibly difficult to solve, we will provide a heuristic 

approach to one of the problems so that a near-optimal solution can be obtained.  

 

4.3.1 Segmentation problem setup 

In an n-bit data converter design, we can establish an independent variable k (1 ≤ 

k < n) denoting for the number of segments so that the segmentation allows to change 

during the optimization process. When k=1, the data converter uses, either a traditional 

or an OEM based binary-weighted array. Otherwise, it contains both architectures 

simultaneously. Regardless, we will always have an n-bit binary-weighted structure.  
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Each segment may possess different resolutions that can be defined as ni, where 1 

< ni ≤ n and 1 ≤ i ≤ k. Then, the sum of these variables adds to n: 

1

.
k

i

i

n n


      (4.14) 

In the following discussions, we will obtain the total required area for the n-bit 

binary-weighted data converter design, which includes analog area, digital area and other 

related design area. First, we start the problem setup by defining the required analog area 

for each segment: 

  analog unit2 1 1 ,

0 1,

in

i i i

i

A A



  

 
   (4.15) 

where unit

iA is the analog area of the unit element and iδ stands for the outlier ratio in 

segment i. It should be pointed out that the segments implemented by a traditional 

binary-weighted structure will always have the outlier ratio to be 0. Then, the entire 

analog area is simply the summation of the analog area from each segment: 

analog analog

1

.
k

i

i

A A


     (4.16) 

For the segments realized by OEM binarization and outlier elimination, we need 

additional digital circuitry. It can be estimated from the given implementation details 

such that each element requires one D flip-flop and one multiplexer. Then, we have the 

resolutions of both circuits within each segment as following, where     corresponds 

to ceiling operation. 
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  (4.18) 

We can also specify the area of 1-bit D flip-flop and 2-1 multiplexer as A
flipflop

 

and A
mux

, respectively. Since the area of both circuits scales up with their resolutions, we 

can write the required digital area in segment i with:  

     digital filpflop flipflop mux mux2 1 1 1 .in

i i i iA n A n A       (4.19) 

Followed by this, the total additional digital area can be formulated by:  

digital digital

1

k

i

i

A A


      (4.20) 

Besides, using different sizing strategies among segments may introduce 

systematic errors, thereby requiring additional k-1 calibration DACs (CALDACs) to 

compensate the inter-segment errors, e.g., [17]. These CALDACs are applied to the 

lower segments so that they can be well matched with the upper segments. The area of 

each CALDAC is proportional to the total area of the corresponding lower segments, 

where we can write the relationship as follows: 

 
1

caldac analog digital

1 1
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    (4.21) 

Then, the total area of CALDACs has the similar forms to (4.16) and (4.20): 
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



      (4.22) 

Based on everything so far, we can conclude the total estimated design area with: 

analog digital caldac.A A A A        (4.23) 

From this formulation, we see that the whole area will be only the analog amount if 

using a conventional binary-weighted array. Alternatively, we will have the integrated 

digital and CALDAC area on top of the analog area when some segments use OEM 

binarization. Furthermore, the routing area is not taken into account in (4.23) because 

our primary goal is to provide a segmentation approach with the best tradeoff between 

area and linearity performance; however, a more accurate expression for the overall area 

could be developed if desired.  

 Next, we will define the DNL and INL performance of the n-bit data converter 

with a 99.7% yield in the problem setup. They can be written in 

variables  -1

DNLF 99.7% and  -1

INLF 99.7% ,  where  -1

YF Q  represents the quantile function 

of the random variable Y when 0 ≤ Q ≤ 1. 

We can impose upper limits on the total area and linearity performance such as: 

max ,A A      (4.24) 

 1 max

DNL 99.7% DNL ,F       (4.25) 

 1 max

INL 99.7% INL .F       (4.26) 

Alternatively, each variable can be treated as the minimization objective. Then, we can 

set up different versions of optimization problems, each of which possesses a different 
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design emphasis. Table 4.1 gives some examples. More problems can be formulated if 

we add extra specifications into the setup. 

4.3.2 Heuristic approach 

Solving the listed optimization problems (4.27)-(4.33) are extremely hard, 

because all of them belong to mixed-integer nonlinear programming [64], [65]. Instead 

of chasing after the optimal solutions that might take a long time to determine, we will 

provide an easy heuristic design approach to one of the posed problems, e.g, (4.27). In 

this case, we give an INL budget with a 99.7% yield, and want to use the minimum area 

to create an n-bit binary-weighted data converter. It should be noted that the equivalent 

heuristic methods can also be developed for other problems. 

 

Table 4.1 Different optimal segmentation problems with each emphasizing on a different 

design scenario 

 

Objective function 

(minimize) 

Constraints 

(subject to) 
 

A  

 1 max

INL 99.7% INLF    (4.27) 

 1 max

DNL 99.7% DNLF    (4.28) 

 1 max

INL 99.7% INLF    

 1 max

DNL 99.7% DNLF    
(4.29) 

 1

INL 99.7%F 
 

maxA A  (4.30) 
maxA A  

 1 max

DNL 99.7% DNLF    
(4.31) 

 1

DNL 99.7%F 
 

maxA A  (4.32) 
maxA A  

 1 max

INL 99.7% INLF    
(4.33) 
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The proposed heuristic approach has a near-optimal area and linearity 

performance tradeoff, and it goes along these steps:  

1. Determine the proper uses of OEM binarization and outlier elimination in 

different resolution cases with given implementation details. 

2. Set n1=3 with predetermined δ1, and n2=n–3. Apply OEM and direct 

binarizations to segment 1 and 2, respectively. Calculate the total area A' 

needed when both segments contribute to half of the total error budget.  

3. Set n1=n. Apply direct binarization to the n-bit data converter design. 

Calculate the total area A" needed under the total error budget.  

4. Compare A' and A".  

a. If A' ≥ A", one should use a traditional binary-weighted array for 

the n-bit data converter design (stop here).  

b. If A' < A", one should use OEM binarization within segment 1 (go 

to step 5).  

5. Find the minimum sum of the analog and digital area for segment 1 by 

using different resolution and outlier ratio cases (obtained from step 1), 

while the linearity target is within half of the total error budget.  

6. Set n1 to the corresponding resolution where the minimum area sum 

happens. 

7. Change the optimization goal to develop an (n–n1)-bit data converter in 

the least area with a total error budget being half of the original total error 

budget. 



www.manaraa.com

99 

 

8. Repeat steps 2-7 with the new divided optimization problem until we 

decide all the segmentations.  

 

4.3.3 Design example 

To be more informative, we apply the heuristic approach to a design example in 

which the fabrication technology is a 0.13μm CMOS process with given mismatch 

parameters Aβ=1%∙μm and AVt=4mV∙μm, and the goal is to create a 14-bit binary-

weighted current-steering DAC for INL ≤ 0.5LSB with a 99.7% yield using the 

minimum area.  

The analog area of the unit current source within each segment can be derived 

based on the corresponding relative standard deviation unit unit

i iσ I and overdrive voltage 

Vgs-Vt [28] as follows: 

 

 

2
2 2

unit

2
unit unit

A 4A
.

2

tV gs t

i

i i

V V
A

I





 
    (4.34) 

The relative standard deviations can be obtained from Monte Carlo simulations while the 

bias conditions of the unit current sources are all given by Vgs-Vt=0.3V for simplicity.  

We also provide the standard cell area of 1-bit D flip-flop and 2-1 multiplexer in 

this technology, where A
flipflop

=34μm
2
 and A

mux
=16μm

2
. Furthermore, to simplify the 

following calculations, we will take αj in (4.21) to be 1 so that the area of each 

CALDAC equals to its upper bound, which is the overall area of the corresponding 

lower segments. Now, all the associated area can be quantitatively evaluated based on 

the given parameters above. 
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 Next, we can use the proposed heuristic method to find out the best segmentation 

for the 14-bit DAC that gives the minimum area within the desired linearity target. The 

complete steps proceed as following: 

Step 1. From Figure 3.4, we have already concluded that the outlier 

elimination becomes much more effective for the element array whose 

resolution is greater than 4, and it becomes inefficient after the outlier 

percentage passes 10% in each case. By increasing the ratio continuously, 

we will not gain any benefits in this design case since the digital area 

soon dominates. Furthermore, beyond the 7-bit resolution, the number of 

multiplexers and flip-flops will become too high which makes the 

interconnect complexity impractical. Therefore, we should use the new 

matching strategy with an upper resolution bound of 7. With everything 

above, we will only consider 5 cases here as summarized in Table 4.2. 

Step 2. First, we will set n1=3, δ1=0% and n2=11. From Monte Carlo 

simulations, to achieve INL ≤ 0.25LSB with a 99.7% yield, the relative 

standard deviations of the unit current source within segment 1 and 2 are 

0.0115% and 0.3%, respectively. From those, we can calculate the total 

area A' as illustrated in Table 4.3. 

Step 3. Then, we choose n1=14. The total area A" is about 1506625μm
2 

to 

achieve INL ≤ 0.5LSB with a 99.7% yield if employing a regular binary-

weighted array. The standard deviation of the unit current source is 

0.21%. 
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Table 4.2 Different resolution and outlier ratio cases considered in the heuristic approach 

based on empirical information 

 

Case # Resolution Outlier ratio 

1 3 0 

2 4 0 

3 5 10% 

4 6 10% 

5 7 10% 

 

Table 4.3 Area calculation in a 14-bit DAC for INL ≤ 0.5LSB with a 99.7% yield using 

3-11 segmentation by OEM binarization 

 

14-bit DAC Design Contributor Area (μm
2
) 

Segment 1 

3-bit DAC 

analog

1A  215361 
digtial

1A  700 

Segment 2 

11-bit DAC 
analog

2A  92241 

CALDAC 1 
caldac

1A  92241 

Total DAC A'  400543 

 

Table 4.4 Minimum area considerations of segment 1 for INL ≤ 0.25LSB with a 99.7% 

yield using OEM binarization 

 

Cases 
Area needed by OEM Binarization 

analog

1A (μm
2
) digtial

1A (μm
2
) Total (μm

2
) 

n1=3, δ1=0% 215361 700 216061 

n1=4, δ1=0% 77594 1740 79334 

n1=5, δ1=10% 19085 6188 25273 

n1=6, δ1=10% 4477 13662 18139 

n1=7, δ1=10% 1344 29960 33508 
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Step 4. Since A'<A", we should apply OEM binarization.  

Step 5. To make most out of the new matching strategy, we can consider 

the cases listed in Table 4.2 when the linearity goal is INL ≤ 0.25LSB 

with a 99.7% yield. Based on the calculations in Table 4.4, we will set 

n1=6 and δ1=10%, which gives the minimum total area. 

Step 6. After identifying the resolution of segment 1, we will replace the 

optimization goal to produce an 8-bit DAC for INL < 0.25LSB with a 

99.7% yield by the minimum area.  

Step 7. Using the similar approach, we can find that OEM binarization 

will still have area advantage. Thus, we will keep using it.  

Step 8. By considering the minimum area sum for segment 2 when the 

linearity objective is INL ≤ 0.125LSB with a 99.7% yield, we will set 

n2=3 and δ2=0. 

Step 9. Once again, we will reformulate the optimization problem to 

produce a 5-bit DAC for INL ≤ 0.125LSB with a 99.7% yield using the 

minimum area.  

Step 10. From the area comparisons, we can show that a regular binary-

weighted array will give the minimum area instead. Therefore, we will set 

n3=5.  

Consequently, the near-optimal segmentation for the 14-bit DAC is 6-3-5, and 

the total area is about 20143μm
2
. Table 4.5 lists the area occupations from different 

segments. In contrast, the traditional segmentation strategies such as 6-8 [17] and 7-7 
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[18] within the same linearity condition will give the overall area of 23245μm
2
 and 

32431μm
2
, respectively.  

We can also apply this heuristic approach to various data converters' resolutions 

for INL ≤ 0.5LSB with a 99.7% yield. From the same implementation details, Table 4.6 

summarizes the near-optimal segmentation solutions. Furthermore, the same 

optimization process can be applied to any data converter designs. For different 

implementation details, different optimal segmentations may be required. Therefore, 

designers will need to set up the optimization problems and implement the heuristic 

steps illustrated here for their own design cases.  

 

4.4 Conclusion  

 In this chapter, we raise the question of optimal binarization, and properly set up 

the problem. Different heuristic solutions are proposed along with a discussion of the 

associated practical and computational difficulties. Based on these, OEM binarization is 

proven to be simple and easy to implement, and meanwhile, it achieves the similar 

matching performance compared to the other binarization methods. In addition, we also 

provide a segmented binarization strategy to accomplish a near-optimal tradeoff between 

the area and linearity performance, which enables various applications in high-resolution 

and high-linearity data converter designs for the new matching strategies. Furthermore, 

this segmentation approach can be replicated in many other data converter designs 

regardless of the implementation details.  

 



www.manaraa.com

104 

 

Table 4.5 Total area calculation in a 14-bit DAC for INL ≤ 0.5LSB with a 99.7% yield 

using segmented binarization 

 

14-bit DAC Design Contributor Area (μm
2
) 

Segment 1 

6-bit DAC 

analog

1A  4477 
digtial

1A  13662 

Segment 2 

3-bit DAC 

analog

2A  197 
digtial

2A  700 

Segment 3 

5-bit DAC 
analog

3A  70 

CALDAC 1 
caldac

1A  967 

CALDAC 2 
caldac

2A  70 

Total DAC A'  20143 

 

Table 4.6 Near-optimal segmentation solutions in various resolution targets for INL ≤ 

0.5LSB with a 99.7% yield  

 

Resolution  Optimal segmentation 

8 8 

10 3-7 

12 4-3-5 

14 6-3-5 

16 7-3-6 

18 7-5-6 

20 7-6-7 
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CHAPTER 5 

CONCLUSION 

 

In this dissertation, a new matching theory called ordered element matching is 

rigorously proven using the theory of order statistics. Outlier elimination is also derived 

to improve the matching performance continuously. Based on these strategies, a new 

matching technique called "complete-folding" is developed to convert a mismatched 

unary-weighted array to a well matched binary-weighted array. In order to demonstrate 

the new matching technologies, a 15-bit binary-weighted current-steering DAC is 

designed and fabricated in a 130nm CMOS process. From the measurement results, both 

of the DAC's DNL and INL can be at the 15-bit accuracy level with a very small area.    

Dealing with the increasingly large variability in nanometer and emerging 

processes is a fundamental challenge facing the whole semiconductor community. The 

knowledge and design strategies developed in this dissertation offer great potential for 

maintaining or improving precision and linearity performance of a large class of analog 

and mixed-signal circuits in the presence of large variability. Such advantage can be 

directly translated into a flexible tradeoff between smaller area and better matching 

performance. The dramatic system level matching improvement with a relatively low 

cost can benefit numerous matching-critical circuit designs in many electronic systems, 

which are often found in communications, computers, medical equipments and many 

other technology markets. 
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The new matching strategies are applicable to all science and engineering 

problems in which accurate system level matching of a large array of mismatched 

components is desirable. It will inspire more researchers to apply statistical knowledge 

innovatively in the IC design areas for reliable, robust and high-performance operations 

in the variability-excessive processes. 
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